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Abstract

Applications that involve analysis of data from distributed networked data sources typically involve computation performed cen-
trally in a datacenter or cloud environment, with some minor pre-processing potentially performed at the data sources. As these
applications grow in scale, this centralised approach leads to potentially impractical bandwidth requirements and computational la-
tencies. This has led to interest in edge computing, where processing is moved nearer to the data sources, and recently, in-network
computing, where processing is done as data progresses through the network. This paper presents a model for reasoning about dis-
tributed computing at the edge and in the network, with support for heterogeneous hardware and alternative software and hardware
accelerator implementations. Unlike previous distributed computing models, it considers the cost of computation for compute-
intensive applications, supports a variety of hardware platforms, and considers a heterogeneous network. The model is flexible
and easily extensible for a range of applications and scales, and considers a variety of metrics. We use the model to explore the
key factors that influence where computational capability should be placed and what platforms should be considered for distributed
applications.
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1. Introduction

Distributed data processing applications involve the pro-
cessing and combination of data from distributed sources to
extract value, and are increasing in importance. Emerging ap-
plications such as connected autonomous vehicles rely on com-
plex machine learning models being applied to data captured
at the edge, while also involving collaboration with other ve-
hicles. Further example applications include factory automa-
tion [1], smart grid monitoring [2], and video surveillance and
tracking [3]. Such applications present a challenge to exist-
ing computational approaches that consider only the cloud and
the very edge of the network. Computationally intensive algo-
rithms must now be applied to intensive streams of data, and
latency must be minimized. In these applications, data sources
transmit streams of data through a network to be processed re-
motely, with a focus on continuous processing, and potentially
involvement in a feedback loop, as opposed to other applica-
tions that involve large scale storage and delayed processing.
Latency, the time taken to extract relevant information from the
data streams, and throughput, the rate at which these streams
can be processed, are key performance metrics for such appli-
cations.
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Centralized cloud computing is often utilized in these sce-
narios, since the data sources do not typically have adequate
computing resources to perform complex computations. Appli-
cations also rely on the fusion of data from multiple sources, so
centralized procesing is useful. The cloud also offers benefits
in scalability and cost, and has been shown to provide benefits
in applications such as smart grid processing [2, 4] and urban
traffic management [5].

However, many emerging streaming applications have strict
latency constraints, and moving data to the cloud incurs sub-
stantial delay. Furthermore, while the data generated by sources
can be small, a high number of sources means that, in aggre-
gate, the volume of data to be transmitted is high. For example,
in 2011, the Los Angeles smart grid required 2TB of streamed
data from 1.4 million consumers to be processed per day [2].
Some applications, such as those dealing with video data, must
also contend with high bandwidth data requirements.

These limitations have led to an increased interest in ‘edge’
or ‘fog’ computing, a loosely defined paradigm where process-
ing is done either at or close to the data sources. This could
mean at the source, such as on a sensor node with additional
processing resources [6]. It can also encompass performing
processing within the network infrastructure, such as in smart
gateways [7], or in network switches or routers. Cisco offer
a framework that allows application code to be run on spare
computing resources in some network elements, and Ethernet
switches from Juniper allow application compute to be closely
coupled with the switching fabric.

Edge computing can also include the concept of ‘cloudlets’,



which are dedicated computing server resources placed a few
hops away from the data sources. These can vary in scale, from
a single box placed on a factory floor to a small scale datacen-
ter comprising multiple networked machines. While the data
sources themselves may not have the required computing capa-
bilities, these resources can support complex applications and
are accessible at shorter latencies than a remote cloud [8].

In complex applications, it is likely that some processing,
such as filtering and pre-processing can be performed at the
edge, greatly reducing the volume of transmitted data, and ad-
ditional processing and fusion of data can be carried out in the
cloud. The benefits of this approach are that latency sensitive
parts of the application can be done locally, while more com-
putationally intensive operations that may require more pro-
cessing power or additional data can be done centrally. Stream
processing applications are well suited to being partitioned and
distributed across multiple machines, as is common in stream
processing frameworks such as Apache Storm and IBM Info-
sphere Streams. Additionally, cloud service providers such as
Microsoft Azure have edge analytics platforms that allow pro-
cessing to be split between the cloud and the edge.

Edge and in-network computing is an emerging area. Cloudlets
have been utilized for image processing applications [9, 10] and
augmented reality [11]. Platforms such as Google’s Edge Ten-
sor Processing Unit demonstrate that there is a trend towards
moving complex computation closer to the data source. In-
network computing has seen application for network functions,
machine learning [12], and high data rate processing [13].

In order to explore the implications of distributing applica-
tion computation across a network of heterogeneous compute
platforms, a suitable model is needed. This would allow for the
evaluation of different deployment strategies using metrics such
as throughput and end-to-end latency. Existing models that deal
with placement of processing on distributed nodes do not con-
sider hardware resources, varied connectivity, and application
features together.

To this end we have developed a generalized formulation
that can represent applications and target networks with hetero-
geneous computing resources. It supports reasoning about in-
network and near-edge processing scenarios that are emerging
including both general processor based machines and hardware
accelerator systems.

Figure 1 summarizes the application scenario of interest,
giving an example of the type of networked system that the
proposed model targets. Edge nodes such as sensors and mi-
crocontrollers transmit data through a network towards central-
ized computing resources. In a traditional cloud computing
setup, only the central resources perform computation (shaded).
In edge computing, the edge nodes are capable of perform-
ing some computation (shaded). In-network computing allows
some tasks to be performed in the network as data traverses it,
using smart switches (shaded).

The key contributions of this paper are:

• A model for evaluating different in-network computing
approaches is developed, encompassing:

– Multiple levels of network structure, unlike existing

Source Source Source Source

Datacenter
Cloud
(Servers,
Servers+accelerators)

In-Network
(Cloudlets,
Smart switches,
FPGA accelerators)

Edge
(Microcontrollers,
Accelerators)

Figure 1: An example of the type of networked system that the proposed model
targets. Shaded nodes can perform computation.

models that focus on clusters of machines.

– Hardware heterogeneity including accelerator plat-
forms, and the resulting differences in computing
and networking.

– Realistic representation of performance metrics, along-
side energy and financial cost.

• The model is used to examine a case-study scenario and
draw general lessons about in-network computing on dif-
ferent platforms using a set of synthetic applications.

2. Related Work

Distributed Stream Processing Models: The allocation of
streaming tasks to networked processing nodes has been ex-
plored in a variety of existing work. Applications are repre-
sented as a graph of tasks with edges representing dependen-
cies, while networks are represented as a graph of compute
nodes with edges representing links.

Earlier models such as Aurora/Medusa [14] focused on load
balancing in task placement, primarily for the allocation of tasks
to multiple servers in a datacenter environment. However, net-
work costs are not modelled, making them unsuitable for sce-
narios that consider larger scale networks where communica-
tion and network costs are more significant. Work on more
network-aware placement [15, 16, 17, 18, 19] was tailored to-
wards networks of machines that are more widely distributed,
and include network utilization and latency in their formula-
tion. These models are all focused on placing operators to op-
timize specific objectives, for example bandwidth utilisation,
meaning that they aren’t generalisable when wanting to model
a range of different performance metrics. Since these online
optimisations are run dynamically, the models are significantly
simplified to minimize their impact on the application. These
models consider homogeneous processor platforms and do not
support alternative hardware platforms with different computa-
tional models and metrics.

Recently, more generalized placement models have emerged [20,
21, 22]. These focus on creating a general representation of the
operator placement problem, developing formulations based on
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integer linear programming instead of focused heuristics. They
are still limited as they assume a fully connected cluster of ma-
chines, and their models of computing resources and tasks are
coarse grained. We are interested in a scenario where hardware
acceleration may be utilized at certain computing nodes, using
a different computational model to that of a processor, which is
considered solely in these models.

In contrast to these works, our proposed model is not fo-
cused on finding an optimal allocation of tasks to a given set of
resources at runtime. Instead, we wish to use it to investigate
the implications of placing computing resources at different lo-
cations in a network and to understand the benefits and costs of
doing so. Since we are not concerned with dynamic optimisa-
tion of operator placement within a time constraint, the model
can include more fine grained detail for tasks and hardware,
accounting for hardware acceleration, heterogeneous resources
required by tasks, the financial cost of adding additional com-
pute capability to network nodes, and energy consumption. We
also consider the networked system as a whole, from the sen-
sor nodes to the datacenter, instead of focusing on a cluster of
computational servers. The focus of this paper is not optimi-
sation, but rather an analysis of different distributed computing
paradigms in the context of streaming applications.

Edge/Fog Computing: In response to increasing demand
for low latency in distributed streaming applications, efforts
have been made to move computation closer to the data source,
or the ‘edge’ of the network. Where processing occurs varies,
and it is rare that the application is entirely pushed to the edge.
Typically operations such pre-processing and filtering take place
at the edge, with aggregation and decision making centralized.
This approach has been applied to domains such as smart grid,
radio access networks, and urban traffic processing [23, 24, 25].
The model we have developed is capable of representing this
scenario.

In some cases a majority of the processing is performed at
the data source. This is common in sensor networks, where
communication costs are higher than computation costs. Some
examples of this are TAG [26], directed diffusion [27], EA-
DAT [28], and MERIG [29]. These models consider computing
at the very edge of the network, unlike those discussed previ-
ously. Our proposed model can account for the energy costs of
communication and computation, as well as representing het-
erogeneous network links, unlike these models.

Processing may also be offloaded to local ‘cloudlets’, servers
dedicated to computation, a few hops away in the network from
the data source. This approach can be seen in mobile edge com-
puting, where processing data on a mobile device would con-
sume too much power, and doing so in the cloud would lead
to high latency [30]. Cloudlets have also been demonstrated in
video processing and augmented reality applications [9, 10, 11]
where latency is an important consideration.

In-network computing is another emerging paradigm in which
traditionally centralized computation is distributed throughout
the networking infrastructure. Devices such as network switches
and gateways are extended to perform additional data process-
ing as well as their network functions. This technique has been
demonstrated to result in a reduction in data and execution la-

tency in map reduce applications [12]. A key value store im-
plemented on an FPGA based NIC and network switch outper-
formed a server based implementation [13]. In-network com-
putation using programmable network switches for a consen-
sus protocol was demonstrated in [31]. As the capability of
this hardware improves, this methodm in which networking el-
ements are used for both moving data as well computing, is
becoming more viable. Extending such capabilities to broader
applications requires the ability to analyse applications com-
posed of multiple dependent tasks and determining how to allo-
cate these to capable nodes. Our proposed model allows this to
be explored in a manner not possible using existing distributed
computing models.

Hardware acceleration: A primary motivation for this work
is the increasing complexity of applications, growing volumes
of data, and more widespread availability of alternative hard-
ware such as GPUs and FPGAs that can boost the performance
of these applications. Recent work has explored accelerators
for a variety of algorithms relevant to networked systems [32,
33, 34]. Within the datacenter, heterogeneity has emerged as
an important way to address stalled performance scaling and
rising energy constraints. FPGAs can be integrated into data-
center servers for application acceleration [35]. FPGA partial
reconfiguration [36] allows these hardware platforms to support
sharing and virtualisation of multiple accelerators that can be
changed at runtime [37], hence offering some of the flexibility
of software platforms with the connectivity and performance
of hardware. This trend is expected to continue with the de-
ployment of FPGAs in commercial cloud computing datacen-
ters [38, 39]. Tightly coupling accelerators with the network
interface has also been demonstrated to be effective in embed-
ded networks [40] and the datacenter [41], and to have signifi-
cant impact on streaming application latency [42]. To reflect the
trend towards heterogeneity, our proposed model encompasses
the idea of distinct hardware platforms with different computa-
tional characteristics. This further differentiates our work from
others that consider only traditional processor based compute
architectures.

3. Scenario and Metrics

The scenario of interest comprises a set of distributed data
sources producing continuous streams of data, connected through
a network comprised of intermediate nodes (for example gate-
ways, routers, or cluster heads) to a central data sink, such as
a datacenter. These data sources could be cameras, streams of
documents, environmental/industrial sensors, or similar. An ap-
plication consisting of a set of tasks and their dependencies pro-
cesses these streams to make a decision or extract value. These
tasks operate on the different streams of data, and some com-
bine information from multiple (possibly processed) streams.
Individual tasks affect the data volume through a reduction fac-
tor that determines the ratio of input data to output data, which
reflects the properties of many stream processing tasks. An ex-
ample of such an application is a smart surveillance system that
monitors video streams from many cameras to detect specific
events. Video streams can come from a mix of fixed cameras
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and mobile platforms, with different resolutions, frame-rates,
and interfaces, requiring different amounts of processing. The
application uses processed information to adapt how the cam-
eras are deployed and positioned.

In order to evaluate alternative allocations of resources and
tasks, we consider the following key metrics of interest, with
some explanation of how they are impacted below. We provide
the comprehensive formulation of these metrics in Section 5.

3.1. Latency
Latency is important when data is time-sensitive. Fast de-

tection of an event may have safety or security implications,
or in some applications, there could be real-time constraints.
In this case-study, transmitting all video streams to the cloud
introduces large communication delays and competition for re-
sources in the cloud can add further latency. Performing com-
putation closer to the cameras, whether at the cameras or in
network switches can reduce these communication delays, and
distributing the tasks to different network nodes reduces the de-
lays from sharing centralized resources. Even with less pow-
erful hardware, latency can improve as a result of this stream
processing parallelisation.

3.2. Bandwidth
Processing sensor data often reduces the size of data, out-

putting filtered or aggregated data, or simple class labels. Hence,
if this processing is performed nearer to the data source, band-
width consumption further up the network can be reduced sig-
nificantly. There may also be scenarios where early process-
ing can determine that a particular stream of data is useless,
and hence further transmission can be avoided. In our exam-
ple, some cameras may use low resolutions or frame rates, and
hence be less costly in terms of bandwidth, while others might
require significantly higher bandwidth, which would be more
efficiently processed nearer to the cameras. It is clear once
again that this decision depends on the specific application and
tasks.

3.3. Energy
Energy remains a key concern as cloud computing contin-

ues to grow; the power consumption of datacenter servers and
the network infrastructure required to support them is signifi-
cant. One approach vendors have taken to try and address this
is to introduce heterogeneous computing resources, such as FP-
GAs, to help accelerate more complex applications while con-
suming less energy. However, these resources add some energy
cost to the datacenter, in the hope that this will be offset by sig-
nificantly increased computational capacity. There is similarly
an energy cost for adding accelerators in the network infrastruc-
ture but this is likely less than the cost of full server nodes, and
leads to a reduced load on the datacenters as they then only deal
with processed data. However, it is clear that energy consump-
tion is heavily dependent on where such resources are placed. It
is also possible that energy constraints at source nodes can im-
pact what can be done there. In this example, battery-powered
drones carrying cameras may have constrained power, so per-
forming more computing there may not be viable.

.

.

.

Figure 2: Nodes in the network graph can represent a single device or a cluster
of networked devices.

3.4. Financial Cost
Adding computing capabilities to all data sources is expen-

sive, especially where the tasks to be performed are computa-
tionally expensive, possibly requiring dedicated hardware. In
this example, the cameras would have to be smart cameras with
dedicated processing resources attached, and this is likely to in-
crease cost significantly. While centralising all computation is
likely to be the cheapest solution in terms of hardware, placing
some computation in the network can come close to that cost,
while offering significant benefits in the other metrics.

4. Proposed Model

The proposed model defines a network topology, task/operator
graph, and hardware platforms. Tasks and hardware platforms
can be allocated to network nodes, and values for the previously
mentioned performance metrics can be calculated. The network
communication topology is assumed to be pre-determined, though
not the hardware at the nodes or the task allocation. The model
is flexible enough to be used in a range of situations.

The logical topology of the network is represented as a graph,
GN = (N, EN), where N is the set of network nodes, with bidi-
rectional communication across the set of edges between them,
EN . Application data travels through these nodes and edges
towards a central sink. A node can represent either a single
machine in the network, such as a gateway, switch or, server,
or a ‘tier’ or ‘level’ of the network infrastructure. In this case
a node represents multiple machines but the connectivity be-
tween them is not modelled at the higher level in the graph (see
Figure 2). Using this representation allows the network topol-
ogy to be represented in a tree structure as suits the application
models considered.

To represent the application, a directed acyclic graph (DAG)
is used to define the relationships between tasks, GT = (T, ET ),
where T is the set of tasks and ET defines the dependencies
between them. GT is a tree structure with a global task at the
root, with other nodes representing sub-tasks, such as aggre-
gations and pre-processing. This task model is based on the
stream processing model, where data is processed per sample
as it arrives.
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Each task t ∈ T can be assigned to a node through an imple-
mentation. Implementations are pieces of software or hardware
logic that can perform the required task. This allows for selec-
tion between software implementations and hardware architec-
tures that may have different benefits and drawbacks. This is
in contrast to previous work which typically considers generic
query operators and does not allow for the possibility of alter-
native implementations of a task. Implementations and tasks
are treated as black boxes that take inputs and produce outputs,
and have already been benchmarked to determine an estimate
of processing time and energy consumption on a reference plat-
form with no other tasks running. A set of platforms that can
be assigned to nodes, P, to execute the tasks can have varying
computational models and available resources.

4.1. Tasks
T = {t1, t2, t3...tT } is the set of application tasks to be allo-

cated to nodes in the network. Individual tasks represent func-
tions to be carried out on a data stream. Together tasks repre-
sent the operations performed on each data stream, and specify
how they are combined and manipulated to extract value. In
this model, data is consumed by a task and transformed, with
the result passed to the parent task. Task dependency is cap-
tured in the DAG, with each task unable to begin until all of its
child tasks have been completed on a given instance of data—
tasks with multiple children are typically aggregation opera-
tions. Each task t ∈ T is defined by t = ( ft,Mt,Ct, at).

• The set Ct ⊂ T contains the prerequisite tasks for t that
must be completed before task t can begin—its child tasks;

• at ∈ T is the parent task of t, which cannot begin until t
has finished.

• ft is the reduction factor, where 0 < ft ≤ 1. This pa-
rameter represents the amount that a task will reduce the
volume of data it operates on;

• Mt ⊂ M is the set of implementations that can implement
the functionality of t;

• The data into (operated on by) a task t, denoted δt, is the
sum of the data out from all sub tasks, δt = (

∑|Ct |

i=0 di);

• The data output from a task, dt, to be processed by the
task’s parent task, is given by dt = ftδt.

This representation of tasks supports different types of opera-
tions, for example, a filtering tasks that reduces a data stream,
or aggregation tasks that merge multiple streams. Traditionally,
aggregation tasks that process several data streams would have
to be centralized but in this model they can be placed at inter-
mediate nodes that has access to the requisite streams.

4.2. Implementations
M = {m1,m2,m3...mM} is the set of all implementations,

which are the pieces of software or hardware that implement the
functionality of a task. Implementations can represent differ-
ent software algorithms or hardware accelerator architectures

that give the same functionality but have different computa-
tional delays or hardware requirements. Each task t ∈ T has
a set of implementations Mt, and each m ∈ M is defined by
m = (tm, τm,Rm, hm)

• tm ∈ T is the task that is implemented by m;

• the set Rm =
{
rm1, rm2, rm3...rRm

}
contains the amount of

each resource needed to be able to host the implementa-
tion, such as memory, FPGA accelerator slots, etc;

• τm is the time taken for this implementation to complete
the task it implements per unit of data, compared to a
reference processor;

• hm = {0, 1} signals whether the implementation is soft-
ware or hardware. A value of 0 is software, 1 is hard-
ware.

4.3. Platforms

Platforms represent the systems in a network node that can
carry out tasks. We define P = {p1, p2, p3...pP} as the set of
platforms that could be assigned to node n ∈ N. Each platform
p ∈ P is defined by p = (ep, cp,wp,Rp, hp), where:

• ep is the execution speed of the platform relative to a
reference processor—this represents different processors
having different computing capabilities;

• cp is the monetary cost of the platform;

• wp is the power consumption of the platform;

• Rp =
{
rp1, rp2, rp3...rpR

}
is the set of resources available

on the platform, such as memory, FPGA accelerator slots,
etc. Resources are required by implementations;

• hp = {0, 1} indicates whether the platform runs software
or hardware versions of tasks. A value of 0 means the
platform is a processor that executes software, and a value
of 1 means the platform is a hardware accelerator that ex-
ecutes application-specific logic. This is used to ensure
correct allocation of software and hardware implementa-
tions.

Unlike existing work, this model makes the distinction between
platforms that execute software code and hardware acceleration
platforms such as FPGAs as they have different computational
delay models, discussed in Section 5.1. Hardware accelera-
tion platforms incur no latency penalty when multiple tasks are
present on the same node, whereas software platforms do, as a
result of contention for computing resources.

4.4. Network

N = {n1, n2, n3...nN} is a set of the network nodes, for ex-
ample sensors, gateways, and routers, or servers. Each n ∈ N is
defined by n = (an,Cn, Pn, bn), where:

• an ∈ N is the parent node of n linking it to towards the
central data sink;
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• Cn ∈ N is a set of child nodes of n linking it to towards
the source(s);

• Pn ⊂ P is the set of platforms that can be assigned to
node n. For example, a large datacenter class processor
that must be housed in a server rack cannot be placed on
a drone;

• bn is the outgoing interface between the node n and its
parent node, and represents the bandwidth in terms of
data per unit time.

4.5. Sources and Data
S = {s1, s2, s3...sS } is the set of data sources. We model data

as continuous streams, as we are interested in applications that
process and merge continuous streams of data. A data source
could represent a sensor, database, video, or other source that
injects a stream of data into the network. Each s ∈ S is defined
by s = (ns, ts, ds, es).

• ns ∈ N is the parent node of the source, the node where
the data stream enters the network;

• ts ∈ T is the task to be performed on data being produced
by the source;

• ds is the amount of data in one instance from this source
per period es;

• es is the period between subsequent units of data of size
ds entering the network.

The model assumes a constant periodic stream of data from the
source, such as a periodic sensor reading, frame of a video, or
set of captured tweets for example. There are some systems that
do not fit this model – for example where sensors may only send
out data if there is some change detected. This case can still be
represented in the proposed model, as the sensor is still contin-
ually capturing data as a source and the detection component
can be modelled as a filtering task that reduces it.

4.6. Allocation Variables
Boolean variables represent the allocations of tasks and hard-

ware to network nodes. xnm = {0, 1} represents the allocation of
an implementation m ∈ M to node n ∈ N. Similarly, ynp = {0, 1}
represents the allocation of platform p ∈ P to node n ∈ N.
znmp = {0, 1} represents the allocation of platform p ∈ P, and
task m ∈ M to a node n ∈ N, using a set of constraints.

A summary of the symbols used in the model is presented
in Table 1.

4.7. Constraints
Constraints are used to ensure correct allocation of tasks,

platforms, and nodes.

4.7.1. Allocate tasks only once

∀t ∈ T,
|N |∑
i=0

|Mt |∑
j=0

xi j == 1 (1)

Symbol Meaning

xnm allocation of implementation m to node n
ynp allocation of platform p to node n
znmp allocation of m and p to n
unm1m2 p allocation of m1, m2, and p to n
τmax maximum path delay
g throughput

Kt ⊂ T set of tasks lower than t in task sub-tree with t at the root
Kn ⊂ N set of nodes lower than n in network sub-tree with n at the root
Ds ⊂ N set of nodes on path from s to root node
vnp 1 if p ∈ Pn, 0 otherwise
Ph ⊂ P set of all platforms that run hardware implementations
Ps ⊂ P set of all platforms that run software implementations
H set of all paths from leaves to root in task graph
Ht ⊂ H set of tasks on path from leaf task t to root
OHt Set of all other tasks not on path Ht

I ⊂ M Set of all software implementations
φmpt Time to complete task implementation on node
q Bandwidth of streams / tasks
L ⊂ T Set of tasks with no child tasks
S Kn Set of all sources that lie beneath node n

Table 1: Summary of symbols used in formulation.

4.7.2. One platform per node

∀n ∈ N,
|P|∑
i=0

yni == 1 (2)

4.7.3. Resource availability
Allocations cannot exceed the available resources for the

platform assigned to a node:

∀n ∈ N,∀e ∈ R,
|T |∑
i=0

|Mi |∑
j=0

xn jr je ≤

|P|∑
k=0

ynkrke (3)

4.7.4. Additional constraints
The model allows for additional constraints to be added in

order to better model a specific system or set of requirements.
Constraints can be added to give certain tasks deadlines, con-
strain bandwidths, restrict specific nodes to certain platforms,
and more.

5. Performance Metrics

As previously mentioned, there are five main metrics of in-
terest in this analysis. Latency, throughput, bandwidth and en-
ergy consumption, and financial cost. In this section we formu-
late these metrics, and discuss how the formulation allows each
to be evaluated.

5.1. End-to-End Latency
The end-to-end latency is the total time between an instance

of data entering the network and its root task being completed.
For example, this could be the time between a sensor reading
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or image being taken and a fault or anomaly being detected.
This value is of interest in time-sensitive applications such as
those concerned with safety or closed-loop control, such as for
industrial equipment, or coordinated control. The model incor-
porates several assumptions and behaviours that are relevant for
this metric:

• Sources s ∈ S produce continuous streams of data of an
amount ds, every period of time es. We take a ‘snapshot’
of the network at any instance of time, and say that data is
entering the system at this instant from all sources, of an
amount ds. The equation we form gives the latency of the
data instances entered at the beginning of this ‘snapshot’;

• Only one software implementation can run at a time on a
node. Software runs on a first in first out basis;

• Hardware implementations of tasks operate independently
from one another so can operate in parallel;

• A task cannot begin until all of its child tasks have been
completed;

• Tasks start as soon as all of the data required is available,
and once completed send the result to the next task as
soon as possible;

• Communication and computation happen independently
and can be parallel to each other;

• There is no communication time between tasks on the
same node.

As tasks can only begin once their child tasks are complete,
we can say the root task of the graph G(T, ET ) can only start
once all paths to it are complete. The end-to-end latency is
therefore equal to the longest path delay of the task graph, in-
cluding network and computation delay.

5.1.1. Computation Delay
The time to complete one task on the node it is allocated to

can be represented:
φmpt = τmepδt (4)

For a task t, implemented with m on platform p. To find the
end-to-end latency, the values of φmpt for each path in the task
tree are summed, and the maximum value determined.

In the case of software implementations, nodes are assumed
to carry out one task at a time. So in the cases of multiple tasks
being assigned to the same node, in the worst case scenario, a
data instance must wait for all other tasks not in the path to fin-
ish before beginning the next task. Note that this applies even if
a node supports concurrent software tasks, since we assume that
multiple software tasks suffer degraded performance in propor-
tion to the parallelism applied. Unlike some other works, which
are only concerned with preventing the allocated tasks exceed-
ing a measure of available resources on a platform, running
multiple software tasks at once on the same node in our model
affects computational delay. For hardware implementations we
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A B C D E

A B
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D
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Hardware node

time

Figure 3: The difference in how a set of tasks allocated to a single node are
scheduled on software and hardware accelerator nodes.

make no such assumption as they can operate in parallel as sep-
arate streams since they are spatially partitioned, and so it is
sufficient to only sum the path of interest, though we do factor
in available hardware resources as discussed later. This distinc-
tion between software and hardware implementations of tasks
better represents the growing trend of using alternative comput-
ing platforms to accelerate computation, compared with previ-
ous work that only accounts for software running on proces-
sors. Figure 3 shows this difference in scheduling for software
and hardware nodes. On software nodes, tasks are performed
in series in the worst case, and on hardware nodes, tasks can be
performed concurrently. In this example, this means that tasks
C and D can be performed in parallel to tasks A and B. Task
E is dependent on tasks B, C and D, so must happen once they
are completed. The added concurrency of hardware accelerator
nodes helps reduce task execution latency when multiple tasks
are assigned to a node.

In order to represent this behaviour, a set of new allocation
variables is introduced: u. Each one of these unm1m2 p = {0, 1}
represents the allocation of two implementations m1 and m2 to
node n, assigned platform p.

The set of tasks on the path from a leaf node on the task
graph t to the root of the task graph is Ht ⊂ T . Let the set
H contain all of the task path sets (Ht ∈ H). The set OHt is
declared, containing all other tasks not on the path Ht. The set
I ⊂ M is defined as the set of all software implementations. The
computation time for a path Ht, τHtc in the task tree is given by:

τHtc =

|N |∑
i=0

|Ht |∑
j=0

|M j |∑
k=0

|P|∑
l=0

ziklφkl j +

|Oi |∑
m=0

( |Im |∑
q=0

uikqlφqlm

−

|Ia j |∑
r=0

uikrlφqlm

) (5)

The znmp term in this equation is the sum of delays on all
paths of the task tree. The unm1m2 p terms represent the extra
delays on the path caused by having multiple tasks not on the
same path allocated to the same node in software. The compu-
tation times of any other tasks allocated to the same node as any
task in the path are added. The subtraction is present to ensure
that this computation time is only added once for each set of
tasks in a path allocated to the same node.
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5.1.2. Communication Delay
A simple communication model is used where tasks send

data to the parent task as soon as it is ready. There is no com-
munication cost between tasks, only between nodes. Commu-
nication and computation can occur simultaneously and inde-
pendently. If a node receives data for a task not assigned to it,
it forwards this data immediately to the next node.

Data is transferred from one node to another when a task’s
parent task is allocated to another node. Similarly to the compu-
tational delay, we can find the total communication delay τHtm

between tasks in each path in the task tree Ht ∈ H:

τHtm =

|Ht |∑
i=0

|N |∑
j=0

|K j |∑
k=0

( |Mi |∑
l=0

xkldi

bk
−

|Mai |∑
m=0

xkmdi

bk

)
(6)

The delay from the data source s on path Ht to the node that
performs the first task on it, τHt s, is given by:

τHt s =

|Ds |∑
i=0

ds

bi
−

|Ki |∑
j=0

|Mtl |∑
k=0

xitl dsl

bi
(7)

Where tl is the leaf in the task path. The total communication
delay in a path τHtk is thus:

τHtk = τHt s + τHtm (8)

The proposed model can be extended to incorporate differ-
ent communication delays for software and hardware tasks as
would be the case for network-attached hardware accelerators
that can process packets with lower latency. The computation
and communication latencies are likely to vary in reality. This
model considers the worst case latency where a node processes
all other tasks first and transmits the results last.

5.1.3. Total Delay
The total latency for a path, τHt , is equal to:

τHt = τHtk + τHtc (9)

The largest of these values is the total latency. τmax.
Although we have discussed a scenario where only a single

task graph is present, the model allows the possibility of multi-
ple independent task graphs representing separate applications.
Using the same method and equations, a τmax can be formulated
for other task graphs.

5.2. Throughput

The throughput of the system is the rate at which results are
output, and dependant on the node with the longest processing
time in the network. A continuous variable g can be introduced
to represent the maximum delay processing stage. For software
implementations, where only one task can run on a node at any
time, this can be expressed:

∀n ∈ N, g ≥
|T |∑
i=0

|Ps |∑
j=0

|Mi |∑
k=0

znk jφk ji (10)

Where Ps is the set of all platforms that run software imple-
mentations. For platforms that run hardware implementations,
Ph:

∀t ∈ T, g ≥
|Ph |∑
i=0

|Mt |∑
j=0

zn jiφk ji (11)

The throughput, v, can then be expressed:

v = 1/max(g) (12)

5.3. Bandwidth
Bandwidth utilization can be very significant in scenarios

involving information sources with dense data and for large net-
works and applications. Poor utilization can also lead to addi-
tional communication delays.

The bandwidth of a data stream at a source s, qs is given by:

qs =
ds

es
(13)

The bandwidth of a task t, denoted qt, is given by:

qt = ft
|Ct |∑
i=0

qi (14)

For leaf tasks tl where |Ct | = 0, it is given by:

qtl = ftqs (15)

The total bandwidth consumption at the output of a net-
work node is the sum of the bandwidths of all streams passing
through it.

qnc =

|Kn |∑
i=0

|T |∑
j=0

( |M j |∑
k=0

xikq j −

|C j |∑
l=0

|Ml |∑
m=0

ximq j

)
(16)

The data not yet processed by any tasks must also be taken
into account. If S Kn ⊂ Kn is the set of all sources that lie beneath
n in the network graph, and L ⊂ T is the set of all tasks where
|Ct | = 0:

qnl =

|Kn |∑
i=0

( |L|∑
j=0

(|S Kn |∑
k=0

qk −

|M j |∑
l=0

xilqs j

))
(17)

Where qst is the bandwidth of the source that leaf task t operates
on.

The total bandwidth at a node n ∈ N is given by:

qn = qnc + qnl (18)

This gives the bandwidth at each link between nodes.

5.4. Energy Consumption
The energy consumption of the network can be relevant for

a variety of applications. In an application that deploys re-
mote nodes with limited power sources for example, such as
a wireless sensor network, energy usage can be a significant
constraint. Most related works do not consider computational
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energy costs. The energy used at a node n ∈ N depends on the
power consumption wp of the platform p ∈ P at that node, and
the times taken τm to complete the implementations mt ∈ M of
tasks t ∈ T allocated to the node. Just as when formulating an
equation for the end-to-end latency, taking a ‘snapshot’ of the
network, the energy consumed by the network per data instance
is given by:

|N |∑
i=0

|T |∑
j=0

|M j |∑
k=0

|P|∑
l=0

ziklφkl jwl (19)

5.5. Financial Cost
The simplest metric is the financial cost of the solution. An

equation can be formed that represents the total cost of the sys-
tem, based on the platforms selected at all of the nodes. The
total cost of the solution is given by:

cmax =

|N |∑
i=0

|P|∑
j=0

yi jc j (20)

Financial cost is a concern as it is ultimately one of the key
drivers in the decision of where to place computing capabil-
ity, and will always be one of the largest barriers to achiev-
ing the best possible placement. We consider the added cost of
the computing platforms required to implement the in-network
computation.

5.6. Combined Evaluation Metrics
We have presented formulations for the 5 important perfor-

mance metrics relevant for evaluating heterogeneous distributed
systems. We have kept these distinct as our proposed model
is designed to be flexible enough to use for different scenarios
and purposes, where the relative importance of these five met-
rics will vary depending on the application. Users of the model
are able to build more complex metrics based on the require-
ments of their analysis, combining whichever of these five is
relevant to their evaluation, and suitably weighting the different
components.

We expect this model to be used in the design and evalu-
ation of alternative structures for deploying heterogeneous ap-
plications. In such scenarios, a constraint-driven approach is
more sensible than a combined metric, and our model supports
such evaluations. For example, a required financial budget or
latency target can be set and other metrics evaluated for dif-
ferent designs. If used to compare designs, the primary metric
of importance can be evaluated, with constraints placed on the
other metrics, such as the best latency for a fixed financial cost
and energy budget.

We demonstrate the flexibility in this model in determining
general lessons around the placement of tasks and hardware re-
sources in our evaluation in Section 7.

6. Case Study

In this section we investigate the implications of different
placement strategies in a distributed object detection and track-
ing system. While the formulation presented in Section 4 can

be used to create an optimal placement of computing resources
and tasks for a given application and network, it might be ar-
gued that such a bespoke design would not be highly practi-
cal, since a more uniform approach to deploying computing
resources is generally required, and the variability of applica-
tions might make a static allocation less ideal. Hence, we eval-
uate strategies for a representative application to learn general
lessons about the placement of computing resources in such
networks. We consider a network of cameras, some fixed and
some mobile, such as drones, tasked with surveying an area to
detect human presence. The images collected by each camera
are processed through a sequence of tasks including the his-
togram of oriented gradients (HOG) and an SVM classifier to
detect objects of interest, and a tracking algorithm is applied
that relies on the fusion of data from multiple cameras.

6.1. Network

We choose a network structure that is generally representa-
tive of that seen in an application such as this. The outermost
layer represents the very edge of the network, comprising the
cameras themselves (layer A). The next layer represents an ac-
cess or gateway layer, that connects the cameras to the larger
network (layer B). Each gateway and the connected sensors
represent different areas that are to be monitored – for exam-
ple rooms or neighbourhoods. Cameras connect to this layer
through interfaces such as 100 Mb Ethernet or 802.11 wireless
LAN. We model a transfer time of 10 ns per bit of data for this
layer. The next layer is a routing layer that connects the local
network to the wider network, with higher speed and bandwidth
interfaces such as 10G Ethernet (layer C). Here we model a la-
tency of 0.1 ns per bit of data. Finally, there is the cloud layer,
which houses the remote computing resources. To reach this
layer data must travel through the internet, for which we as-
sume a communication time of 1 ns per bit, based on round trip
times to AWS EC2 instances measured in [43]. These commu-
nication times are estimates and ignore frame/packet overheads,
and many other delays, but are there to model variation in trans-
fer time between different layers.

The topology we use in this case study is shown in Fig-
ure 4. It includes a mix of nodes with high and low fanout, and
nodes at all of the layers discussed above. Links appear unidi-
rectional as we assume data must flow through these layers in
order to reach the cloud/datacenter. It is important to note that
the layer B/layer C nodes do not represent individual machines,
but rather layers of the network hierarchy, comprising multiple
machines. Communication within these nodes is neglected in
this case study.

6.2. Tasks

The HOG algorithm used in this case study has been pre-
viously implemented on a variety of computing platforms [44,
45, 46]. For the sake of this case study we break down the al-
gorithm into 3 tasks: gradient computation, normalisation, and
classification. While there are more tasks that form this algo-
rithm, these 3 take a majority of the computation time and have
a significant effect on data size. From [44] we obtain estimates
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Figure 4: Network structure used in this case study.

for the reduction factor of each task. The tracking algorithm
uses these HOG features and a KLT tracker [47], relying on fu-
sion of data from multiple cameras. Therefore this task must be
placed elsewhere in the network, at a location that can access
all necessary cameras.

Platform Grad,Hist Normalisaton Classification Tracking

Cortex A9 2,000 3,200 1,900 2,000
Intel i7 40 60 35 40
Intel Xeon 2.6 4.0 2.3 2.6
Xilinx Zynq 260 400 240 260
Xilinx Virtex 6 1.3 2.1 1.2 1.3

Reduction factor 0.77 0.004 0.16 0.16

Table 2: Computation times in milliseconds for each task on different platforms.

In our case study, each camera has a set of tasks, gradi-
ent comp→ histogram→ classification, associated with it, and
then each area of cameras has a tracking task that processes the
result from multiple camera chains.

6.3. Platforms
From previous work, we estimate the computation times for

each task on the different platforms. Though these are esti-
mates, and different implementations may have varying optimi-
sations, the relative computation times are the important factor
for this case study. If computation is placed at a camera node,
we assume an embedded platform. An embedded Arm Cortex
A9 is used in [44] to implement the HOG algorithm, so we use
the computation times presented there.

If computing is placed at the access or routing layers, we
can assume a more powerful CPU is available. The work in [46]
implements the algorithm on an Intel Core i7 processor. Finally,
the cloud layer would use server class processors, such as the
Intel Xeon platform used to implement the algorithm in [45].
We also discuss the implications of using an FPGA to accelerate
tasks. The work in [44] presents an FPGA design that gives a

speed up of around 7× on a Xilinx Zynq platform that could be
embedded at the camera. An FPGA accelerator implemented
on a larger Xilinx Virtex-6 FPGA was reported in [45], and we
assume this is the FPGA platform available at other layers. We
use the relative performance on these platforms to estimate the
computation time of the tracker task. Table 2 summarizes time
taken for each task on each platform per frame.

The costs of each platform are also relevant. In this case
study we consider the extra costs associated with adding com-
puting resources to different layers of the network. Cloud/datacenter
costs are difficult to estimate, so we assume that this central
node is present regardless of how we place other computing
resources. Table 3 summarizes approximate costs and power
consumption for each of the platforms in arbitrary currency and
energy units based on costs we have determined from OEM
suppliers, and manufacturer power estimation utilities.

Platform Cost Power Consumption

Arm Cortex A9 10 1
Intel Core i7 300 5
Intel Xeon 2000 100
Xilinx Zynq 250 5
Xilinx Virtex-6 1000 10

Table 3: Financial cost and power estimates for each platform.

The FPGA resource utilization estimates in the previously
cited works suggest that both FPGA platforms can implement
3 full pipelines of the algorithm pipeline each, so 12 tasks. We
assume CPU based platforms have no limit to the number of
tasks that can be running, though, as discussed in the formula-
tion, there is a latency penalty for sharing resources. We focus
on latency, throughput, energy consumption, and financial cost
as the metrics of interest.

We use our model to build the above scenario and evaluate
different compututation placement strategies. We implement
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Placement Latency Throughput Cost Energy
(ms) (frames/s)

Centralised 1.95 3.43 2000 30.03
Layer C 1.97 0.88 3200 23.00
Layer B 1.93 0.94 4100 23.00
Layer A 7.16 0.14 2300 241.2

Table 4: Performance metrics for different placement strategies using software
platforms.

the model in Python, using classes to represent the nodes, plat-
forms, tasks and implementations, all containing members rep-
resenting the various parameters discussed previously. Results
are presented in Table 4 for software platforms and Table 5 for
hardware platforms. We show the latency, throughput, financial
cost, and total energy consumption of the entire system. Band-
width results are not shown in this table as they are calculated
per node in our model.

Centralized Software: A typical approach to such an ap-
plication would be to centralize all tasks, performing them in
software, transmitting all data to the cloud or datacenter. In this
case study, this gives a latency of around 1.95 s, and a through-
put of 3.4 frames per second for each camera. Note that this is
in the worst case, where all camera streams compete for CPU
resources. The large communication latency coupled with the
large amount of data being transmitted undermines the extra
computing power provided by the cloud. Energy consumption
was also joint highest with this approach, as the Centralized
hardware has the highest power consumption.

In-network software: An alternative approach is to push
processing tasks down into the network. One possibility is plac-
ing the gradient computation, normalisation, and classification
tasks on the camera nodes (layer A), and placing the tracking
tasks at the appropriate layer B nodes as they require informa-
tion from a set of cameras. This results in a latency of around
7.16 s and a poor throughput of 0.14 frames per second, unsuit-
able for real time applications. The energy consumption seems
high, but this value is the energy consumption of the entire sys-
tem - the consumption at each individual node is much lower.
While there is communication latency, and fewer tasks compet-
ing for the same resources, the computing capability of these
edge nodes is so low that the latency and throughput are much
worse than the centralized placements.

Distributing tasks within the intermediate network infras-
tructure offers improved latency relative to placing tasks in layer
A, but has minimal impact when compared to centralized place-
ment. In this scenario, the reduced communication latency is
offset by the increased computation latency. Layer B and layer
C approaches introduce additional costs of 2100 and 1200 cur-
rency units respectively. The centralized solution also has 3.65×
higher throughput than these approaches. This is because of its
increased computing capability relative to these other nodes,
meaning that there is less compututation latency. Energy con-
sumption is less than centralized software, due to the lower
power consumption of the hardware. This energy consumption
is also spread across a greater number of nodes, meaning each

node consumes less energy.
Centralized Hardware: Utilising FPGA acceleration at

the server node reduces the latency to 1.68 s, and increases through-
put to 133 frames per second, as a result of reductions in com-
putation latency. While the FPGA should in theory provide a
greater performance boost than this, the time taken for data to
travel to the cloud limits the improvement that can be achieved
for the application. The energy cost of running these tasks in
hardware is also much lower than in software. The FPGA ac-
celerator has a lower power consumption, as well as lower com-
pututation time.

Placement Latency Throughput Cost Energy
(ms) (frames/s)

Centralized 1.68 133 13000 1.56
Layer C 0.844 133 14000 1.56
Layer B 0.8 133 16000 1.56
Layer A 0.94 1.10 11600 30.6

Table 5: Performance metrics for different placement strategies using hardware
platforms.

In-network hardware: Adding FPGA accelerators to layer
C reduces latency to 0.84 s, and increases throughput to 133
frames per second due to the performance of the FPGA accel-
erators dramatically reducing computation latency. Placing FP-
GAs in layer B further improves latency to 0.83 s. These place-
ments give improvements over the centralized FPGA approach
due to the reduction in communication latency. There is little
difference in latency between placing tasks predominately in
layers B or C, as the fast link between these layers means that
there is minimal communication delay. The disadvantage of the
in-network FPGA approach is the additional cost, with the layer
B and C methods costing 16000 and 14000 currency units re-
spectively. Moving all tasks in hardware to the layer A camera
nodes offers improvements over the software equivalent due to
the increased computing capability. It also improves over cen-
tralized approaches due to the reduced communication latency.
However the higher computation latency relative to layers B
and C means that there is a higher overall latency, and worse
throughput. While the total energy consumption for the layer
A approach looks high, it is spread across a greater number of
nodes. Each layer A node actually has a power consumption
of approximately 0.956. The same processing hardware is im-
plemented on the FPGAs in layers B and C, as well as when
centralized. This results in the throughput being equal in all
circumstances, despite the higher communication latency.

Optimal Placement Our model can be used with a Mixed
Integer Linear Program (MILP) solver to generate a specific
task and hardware placement strategy to optimize any of the
performance metrics detailed in Section 5. To do this, the Python
PULP front end was used to interface to the CBC solver. In this
case, we optimize for latency, as in this example, energy and
throughput are directly related to latency. We first generated
the optimal latency placement, then ran the optimisation again
with a latency constraint 5% higher than this value, but opti-
mising for cost. This forces the solver to generate the cheap-
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est placement that achieves a latency within 5% of the optimal
value. As a result, our model generated a placement with the
metrics shown in Table 6. This is presented for completeness;
it may be argued that customising a network for a specific ap-
plication is unlikely to be a common requirement. Hence, we
have focused primarily on the general lessons learnt in terms of
placement strategies for hardware in the network.

Placement Latency Throughput Cost Energy
(ms) (frames/s)

Optimised 0.87 133 9000 1.56

Table 6: Performance metrics for MILP optimisation of model.

Summary: Improvements can be made to streaming appli-
cation latency by pushing tasks into the network in either soft-
ware or hardware. This also offers improvement in energy con-
sumption at each individual node, important when there may be
a limited power budget. There is a balance between the com-
munication latency to reach higher capability nodes, and the
benefits to computation latency that they provide. Placing tasks
at the very edge of the network minimizes communication la-
tency but is limited by poor computational capability. The cloud
offers the highest computing capability but there is a commu-
nication latency bottleneck. The downside of using in-network
task placement is the additional financial cost of the extra hard-
ware. However, with the price/performance ratio for embedded
devices scaling significantly faster than for server class CPUs,
we expect this to improve over time.

6.4. Event Driven Simulation

We further developed a discrete event simulator written in
Python using the SimPy library, to test the validity of results
produced by our model. Data sources emit periodic packets of
data into the network with the same topology and task structure.
The tasks are allocated to the relevant nodes, and are executed
at the nodes in a first-in first-out fashion, with priority given to
the oldest data packets.

We expect differences in the reported latencies from the
model and simulator primarily due to the more detailed task
and communication scheduling in the simulator. The simula-
tion processes individual packets as opposed to the considering
abstract streams in the model. The data sources in the simu-
lator emit packets with fixed periods, sources are unsynchro-
nized, whereas the model implicitly assumes synchronisation.
The simulation also takes into account a small switching delay
at nodes, representing the transfer of data form received pack-
ets to the computing platform. We have not included various
network related parameters in the simulation, as these are not
influenced by the allocation of tasks and platforms.

Simulations of the above scenario were run for 20,000 pack-
ets entering the network from each source. The sources were
fixed to the same period, but set out of sync with each other,
to a degree determined from a uniformly distributed random
variable. Figure 5 shows the deviation between the metrics pre-
dicted by the model and those measured in the simulation. We

Cent. Layer C Layer B Layer A
0

2

4

6

8

Configuration

La
te

nc
y(

s)

model
simulation

(i) Software platforms

Cent. Layer C Layer B Layer A
Configuration

model
simulation

(ii) Hardware platforms
(a) Latency

Cent. Layer C Layer B Layer A
0

50

100

150

200

250

Configuration

To
ta

lE
ne

rg
y

co
ns

um
pt

io
n

model
simulation

(i) Software platforms

Cent. Layer C Layer B Layer A
Configuration

model
simulation

(ii) Hardware platforms
(b) Total Energy Consumption

Cent. Layer C Layer B Layer A
0

20

40

60

80

100

120

Configuration

T
hr

ou
gh

pu
t

(r
es

ul
t/

s)

model
simulation

(i) Software platforms

Cent. Layer C Layer B Layer A
Configuration

(ii) Hardware platforms
(c) Throughput - A higher value indicates superior performance

Figure 5: Difference between values calculated through the formulated model
and a discrete event simulator for the same configurations and parameter values.

do not show financial cost, as there will be no difference be-
tween the simulation and model, and we do not show bandwidth
as it is calculated for each individual node, not the system as a
whole.

We see that if considering only software platforms, the dif-
ference between the model and simulator is close to 6%, and
in hardware 7%. These differences stem from the data sources
being out of sync, and the switching delays introduced at each
node, not represented in the model. The ratio between com-
putation time and network switching delay impacts this error,
and hence in the case of hardware, where computation time is
reduced, the overhead is more significant. However, these de-
viations are still well within tolerable levels.

7. Further Analysis

While determining a fixed optimal solution for a given ap-
plication and network topology is possible by using an MILP
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solver as we discussed, in this section, we consider synthetic
scenarios in an attempt to draw general lessons about distributed,
accelerated in-network computing. We explore how application
and network properties influence the decision on where to place
computing resources for this range of scenarios. Since latency
is the primary metric of interest, we focus on that in this section.

For this analysis, we use a Python script to pseudo-randomly
generate application task graphs. These are in a tree structure
with a maximum depth of 4 tasks, reflect a realistic partitioning
granularity rather than a very fine grained structure that would
skew further towards in-network computing. We use a fixed
network structure, with a similar layer A/B/C hierarchy and in-
terface specification as used in the case study in Section 6, how-
ever with 8 layer C nodes, each serving 2 layer B nodes, each
of which serves 5 layer A nodes.

Several constraints are placed on the task generation. The
tree is built up leaf tasks, with a random variable determining
whether each task is connected to a new task or joins one al-
ready existing in the tree. Tasks can only join other tasks whose
leaf tasks originate from nodes that share the same layer B par-
ent. We generate 100 random task trees in this manner, and the
same 100 trees are used to evaluate each placement strategy,
summarized in Table 7. For the purposes of this analysis, we
assume that there are no restrictions on the number of tasks that
can be allocated to a node, and all tasks are to be executed in
’software’ - meaning that in our model there is a latency penalty
dependant on the number of tasks allocated to the same node.

In this section, we focus on the latency metric, as latency
reduction is one of the main motivations behind in-network
and edge computing. The case study in Section 6 showed that
latency and throughput are closely related for these types of
streaming applications.

Strategy Explanation

Centralized All tasks allocated to root node

Pushed All tasks pushed down toward the leaf nodes as much
as possible

Intermediate All tasks pushed down as far as possible, but not to leaf
nodes

Edge/Central Leaf tasks placed at leaf nodes, others placed centrally

Edge/Network Leaf tasks placed at leaf nodes, others pushed down as
far as possible but not to leaf nodes

Table 7: Different placement policies used in our simulations.

7.1. Relative Computing Capability

A key factor that determines where to place tasks is the rel-
ative computing capability that can be accessed at different lay-
ers of the network. In general, the closer to the centre a node is,
the greater the computing capability, since the cost is amortized
across more streams. The resources at the edge of the network
are more likely to be limited due to space, energy, or cost con-
straints, while nodes further up in the hierarchy will have ac-
cess to better hardware. However using better resources further
up the network entails a communication latency penalty, which
must be overcome by improved computation latency. For this

comparison, we set tasks to have a reduction factor of 50% and
equal latency on the same platform. Figure 6 shows how dif-
ferent placement strategies impact latency, for different relative
computing capabilities.

In the unlikely case where computing capability is equal
across all layers (i.e. a Centralized:B/C:A computing capability
ratio of 1:1:1), pushing all tasks as close to the data sources as
possible yields the lowest latency as there is minimal commu-
nication delay, and no benefit to placing tasks higher up. This
may be the case if the network is a commodity cluster of ho-
mogenous machines. Computation time is also improved since
the tasks are distributed across many nodes resulting in less con-
tention than for a centralized placement.

If the compute capability at the data sources is significantly
smaller (50× in this case), while the rest of the network offers
equivalent computing capability (a ratio of 1:50:50), pushing
tasks down to intermediate nodes offers the best latency. In
this case, the slight reduction in communication latency gained
through placing tasks at the data sources is outweighed by the
computation latency penalty. Placing them any closer to the
central node adds further communication latency with no addi-
tional benefit, and causes contention due to more tasks being
allocated to fewer nodes.

The more likely case is that resources at the central node are
more capable than intermediate nodes, which offer greater ca-
pability than the edge. In the case of the central node being 5×
more capable than the intermediate nodes (a computing capabil-
ity ratio of 1:50:250), pushing tasks as low as possible into the
intermediate nodes still outperforms the centralized solution, as
tasks are distributed to a larger number of nodes, reducing com-
putation latency. Increasing the difference in computing power
to 10× (1:50:500) causes the central solution to become domi-
nant.

Hence, we see that a key requirement for in-network com-
puting to be feasible is that suitably capable computing re-
sources be employed for executing tasks in the network. The
more capable the edge nodes are in comparison to the root
node, the greater the benefits of placing tasks further towards
the edge.

7.2. Task Data Reduction

The time taken to transmit data further up the network is
tied to the amount of data being transmitted. Tasks can reduce
data by varying degrees, and this impacts the balance between
computation and communication latency. For this experiment,
we modify the reduction factors of tasks to observe the impact
on latency. We use the same network topology as in the previ-
ous experiment, and the same method of generating task trees.
To mimic a realistic scenario, we use a 1:50:500 relative com-
puting capability configuration, as discussed in Section 7.1.

Figure 7 shows how different placement strategies impact
latency, for different task reduction factors. If data is dramati-
cally reduced by tasks close to the edge of the task tree, plac-
ing tasks as close as possible to the data source is more likely
to provide a latency improvement as the communication cost
for every other transfer between nodes is reduced. We see that
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Figure 6: Latency comparison for different Layer A:B:C computing capability ratios.

intermediate placement reduces latency by 5× compared to a
centralized allocation in such a scenario. Placing all tasks at the
edge results in 30% worse latency, despite the reduced commu-
nication latency, due to the low computing capability of these
nodes. Placing only the leaf task at the edge and the rest either
in the network or at the central node also provides a significant
reduction in latency in this scenario.

If data is not significantly reduced in the task tree, or only at
tasks higher up in the tree, placing tasks towards the central sink
is preferred, especially if those resources are more capable. A
centralized placement provides the best latency in a majority of

cases, although only by a slight margin. For some task trees, the
in-network approach is superior. This result is impacted by the
relative computing capability of layers. For scenarios where the
central node is much more capable than the rest of the network,
the instinct is to place tasks there. However, if data is reduced
significantly at the leaf tasks then placing tasks in the network
can reduce communication latency significantly.

It can be seen that, generally, the closer to the edge tasks
that data is reduced, the greater the benefits of placing tasks
closer to the edge of the network.
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Figure 7: Latency comparison for different edge task data reduction factors.

7.3. Network Structure

The structure of the network determines to what extent tasks
can be distributed and parallelized and how much they must
compete for resources. Related to this is the structure of the ap-
plication task graph; having tasks that require data from multi-
ple sources closer to the root of the tree means that tasks cannot
be pushed down into the network to a layer with more com-
puting nodes. To investigate this factor, we consider different
network structures and their impact on latency, as shown in
Figure 8. The tasks were generated with the same method as
before, and network nodes had the same computing capability
as in Section 7.2. All tasks were set to a fixed reduction factor
of 0.5.

Firstly, we examine a network with low fanout, where layer
B nodes each have 2 layer A nodes attached. While this means
that there was more available resources towards the edge of the
network, in many cases pushing tasks into the network results
in almost 2× the latency of a centralized solution. Tasks that
require data from more than one source must be pushed fur-
ther up the network, adding additional communication latency.
Additionally, as there are few layer C nodes, these nodes are
over-utilized. Increasing the number of layer C nodes, or the
computing capability of these nodes would offer performance
benefits in this scenario.

Raising the fanout of the layer B nodes to 5 instead of 2
increases the benefits of pushing tasks into the network. As
more sources share the same paths towards the central node,
there is a higher chance that a task that works with data from
multiple sources can be placed closer to the edge. Increasing the
number of nodes at layer C in this case again slightly decreases
latency, as tasks that do have to be placed there have access to

more resources.
Further increasing the fanout of the layer B nodes to 20

starts to increase latency again, up to around 0.45× the cen-
tralized placement. Increasing it to 40 increases the latency to
around 0.7× the central placement.

A larger fanout at layer A (the edge layer), up to a point
means that there is a greater benefit of pushing tasks down to-
wards the network edge, as there are more opportunities to place
tasks that require data from multiple child tasks closer to the
edge. However if the fanout is too great, resource competition
starts to reduce the benefits of this approach.

It can be seen that there exists a trade-off between having
multiple sources connected to the same path of nodes, and cre-
ating too much resource contention by having too many tasks
assigned to the same intermediate nodes.

7.4. Hardware Acceleration

There are several key points we can take away from this
investigation. In-network computing is more effective in situ-
ations where the edge and intermediate nodes are comparable
in capability to the central node. While this is unlikely with
traditional software processing platforms, it makes the case for
trying to integrate hardware accelerators such as FPGAs into
the network, as they can provide processing times closer to the
more powerful processors found in a datacenter environment.
We can also see that in-network computing provides more ben-
efits in applications where data is more greatly reduced in tasks
closer to the edge of the task tree. These tasks can often be large
filtering or pre processing tasks, and in order to place them close
the the edge of the network, more capable hardware is required.
This again makes the case for hardware acceleration. Finally,
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Figure 8: Latency comparison for different network fanout factors.

high fanout network topologies benefit more from in-network
computing as there are more opportunities for data fusion be-
tween tasks. The ability of hardware acceleration architectures
to process streams of data in parallel is well suited to these sce-
narios, suffering less of a latency penalty due to resource con-
tention.

8. Conclusion

The placement of computing resources and allocation of
tasks in distributed streaming applications has a significant im-
pact on application metrics. We have presented a model that
can be used to reason about such applications. It models data
sources that inject data into this network, applications com-
posed of dependent tasks, and hardware platforms that can be
allocated to nodes in the network. The model can be used
to evaluate alternative strategies for allocating computing re-
sources and task execution, offering information on latency,
throughput, bandwidth, energy, and cost. We have used this
model to demonstrate that computing in the network offers sig-
nificant advantages over fully centralised and fully decentralised
approaches, using an example case-study of an object detection
and tracking system. We also used synthetically generated ap-
plications to explore the key application factors that impact the
effectiveness of the in-network computing approach.
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