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the Internet of Things
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Abstract: The Internet of Things is manifested through a large number of low-capability
connected devices. This means that for many applications, computation must be
offloaded to more capable platforms. While this has typically been cloud datacenters
accessed over the Internet, this is not feasible for latency sensitive applications. In this
paper we investigate the interplay between three factors that contribute to overall
application latency when offloading computations in loT applications. First, different
platforms can reduce computation latency by differing amounts. Second, these platforms
can be traditional server-based or emerging network-attached, which exhibit differing
data ingestion latencies. Finally, where these platforms are deployed in the network has a
significant impact on the network traversal latency. All these factors contributed to
overall application latency, and hence the efficacy of computational offload. We show
that network-attached acceleration scales better to further network locations and smaller
base computation times that traditional server based approaches.
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1 Introduction

Resource constrained Internet of Things (IoT) platforms
at the network edge often need to offload compute inten-
sive processing to more capable hardware in the cloud.
While this can result in reduced computation time due
to the more capable hardware available in cloud data-
centers, it costs additional communication latency due
to the need for data to travel to the cloud and the re-
sponse to return to the IoT node. Hence, the application
acceleration factor— the relative reduction in computa-
tion latency— must be enough to overcome this additio-
nal communication latency penalty. Edge computing is
a broad paradigm in which processing is moved from
high performance centralised resources towards the da-
ta source at the periphery of the network. Computing
resources are typically less capable at edge nodes, but
communication is minimised since data need not be mo-
ved up the network to be computed on. With the In-
ternet of Things driving an explosive growth in connec-
tivity of resource constrained computing platforms, we
must consider how to address the latency implications
of cloud-based computing offload.

Latency is a key performance metric in a variety of ap-
plications. In augmented or virtual reality applications,

user experience is directly tied to latency. Industrial au-
tomation systems have stringent latency requirements
that have productivity and safety implications, as do
smart vehicles. These scenarios often include computa-
tionally complex operations such as object detection and
classification, which can be too challenging for resour-
ce constrained nodes to perform. When offloading, the
total latency of these applications is determined by the
sum of the computation latency, and the communication
latency required to reach the offload platform.

In order to reduce computation latency, more capable
hardware is often exploited in offload platforms and this
is what enables the trade-off against increased commu-
nication latency. The cloud hosts powerful server class
processors that are much more capable than the micro-
controllers or single board computers typically availa-
ble in IoT nodes. Servers can be scaled and computing
performance increased depending on application requi-
rements. There has also been an increasing trend of ad-
opting heterogeneous specialised hardware in the data-
center to further improve performance and efficiency.
FPGASs have recently seen increased use in the datacen-
ter due to their flexibility and increased performance per
watt compared to CPUs and GPUs in various applicati-
ons [1, 2, 3, 4]. As latency requirements have increased
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in importance and hardware at the network edge has
improved, the benefits of offloading to centralised com-
puting resources is now heavily impacted by inherent
communication delays.

Reducing communication latency has been tackled
through moving the more capable processing platforms
closer to the edge. Cloudlets are small-scale datacenters
or servers deployed close to data sources, in an attempt
to provide cloud-like services a few hops away in the
network [5, 6, 7]. Data now traverses a few switches
over a LAN instead of the Internet, reducing commu-
nication delay and improving predictability. They have
been shown to reduce latency in a range of applications,
providing greater computing capabilities to less capa-
ble edge nodes. Cloudlets may utilise capable hardware
comparable to that found in larger cloud datacenters,
including hardware accelerators. While network commu-
nication latencies are reduced, these platforms are ba-
sed on traditional server architectures are still subject
to typical latency penalties from the software network
stack, PCle interconnect, and competition for resources
between applications.

While moving processing closer to the edge reduces the
communication latency by reducing the time taken for
data to traverse the network, a significant proportion
of the latency can be attributed to the time taken for
data to reach the computational resources once it ar-
rives at the target offload platform. Network interface
cards, PCI Express interconnect, and the software net-
work stack, among other factors, all contribute to this
non-deterministic delay [8]. Accelerators in the datacen-
ter typically augment compute servers over PCI Ex-
press, entailing further latency to exploit their accele-
ration capabilities [9]. In [10], these ingestion latencies
were identified to be key contributors to the latency of
a DNN application when hardware acceleration reduces
computation latency sufficiently. As hardware improve-
ments reduce the computation latency, and moving pro-
cessing closer to the edge reduces the network traversal
time, network data ingestion latency becomes an im-
portant factor, and a potential bottleneck for IoT app-
lications with offloaded computation.

Network ingestion latencies can be reduced through
tighter coupling of hardware acceleration to the net-
work interface. FPGAs offer a highly capable accelerati-
on platform as they allow the design and implementati-
on of customised datapaths tailored to specific applica-
tions, thereby offering efficient high performance com-
puting. An additional benefit is that they can be tightly
coupled to network interfaces, to receive data directly
from the network without it having to traverse PCle or
a software network stack in a host server, thereby signifi-
cantly improving network ingestion latency. FPGAs can
be integrated into network interface cards (NICs), swit-
ches, or IoT gateways to process data before it reaches a
server. This tight interface coupling has significant ad-
vantages for lightweight offload nodes, where standard

ingestion latencies can be high.

In this paper, we explore the trade-off between compu-
tation acceleration and offload platform location, with
consideration for network ingestion latency. We demon-
strate that as processing is moved closer to the ed-
ge, ingestion latency becomes an increasingly import-
ant component of total application response time. We
also examine the effect of reducing the ingestion laten-
cy through network attached acceleration platforms and
show how applications with different computation to
communication latency ratios are affected.

2 Related Work

For data to move to a large cloud platform such as Ama-
zon EC2 it must travel through a WAN such as the in-
ternet, resulting in large and non-deterministic delays,
in the range of 10-100s of milliseconds depending on da-
tacenter location [11]. Edge computing is a broad term
that encompasses various methods of implementing da-
ta processing closer to sources. This can often reduce
latency as data does not have to travel through as large
of a network to reach the application. In this section we
will discuss related work in these areas.

2.1 Cloudlet Servers

Cloudlets provide locally accessible increased computing
capability to less capable nodes, often over a LAN. They
act as small scale cloud services, with lower latency re-
sponse times in comparison to larger datacenter plat-
forms [12]. One growing application of cloudlets is for
compute-intensive mobile applications, where offloading
parts of the application can result in improvements to
both latency and energy consumption of the user devi-
ce [13, 14]. Image processing applications are often utili-
sed to demonstrate the effectiveness of these platforms.
Applications such as face recognition [5, 6], augmented
reality [7] and video surviellance [15] have all been de-
monstrated on cloudlet platforms with significant laten-
cy improvements over traditional cloud offloading. The-
se cloudlets are attractive for application that are time
sensitive, but where the computation is too intensive to
be done on less capable hardware at data sources.

Datacenters — and thus the similar but smaller sca-
le cloudlets — have seen an increased deployment of
hardware accelerator devices in recent years. Platforms
such as Graphics Processing Units (GPUs) and FPGAs
are augmenting traditional CPUs as their performan-
ce scaling has slowed. Compute intensive functions can
be offloaded to these accelerators over the PCle in-
terconnect in a server, and computation latency re-
duced through the use of hardware structures optimi-
sed for a specific set of applications. FPGAs in par-
ticular are seeing interest due to their flexibility, and
performance per watt compared to CPUs and GPUs



[16, 17, 18, 19] and their virtualisation support to al-
low sharing among multiple applications, and dynamic
adaptation to workloads [20].

While cloudlets are in closer proximity to the data
sources, and thus reduce communication latency over
the network, there are multiple sources of delay wi-
thin the cloudlet that can increase the total latency of
the application, as with full-scale datacenters [21, 22,
23]. Virtualisation, multi-tenant contention, and PCle
offload [9] all add delay and variability.

2.2 Edge Node Computing

We consider the term edge node computing to refer to
computing performed at the data source, or at a node
directly connected to it, such as a cluster head or IoT
gateway. Resources at these nodes are generally less ca-
pable than at a cloudlet, but there is little communi-
cation latency. Often, micro controllers or single board
computers running embedded Linux are used in these
deployments, with smaller microcontrollers running real
time operating systems for sensor nodes. Smart gate-
ways are often used for IoT applications, collecting data
from sensor nodes through WiFi or Bluetooth and per-
forming processing. This has seen use in medical applica-
tions and manufacturing [24, 25, 26], where performing
processing at a gateway node results in lower latency
and energy consumption than doing it at the sensor no-
des.

FPGAs have also seen use for edge node acceleration,
utilizing SoC platforms such as the Xilinx Zynq that
tightly couple an FPGA with an Arm processor. This
has seen use in gas sensor networks and industrial app-
lications [27, 28], and involves software running on the
processor system controlling and communicating with
the FPGA fabric. These edge devices typically house
smaller FPGAs with fewer resources, meaning that cer-
tain optimisations of the accelerator must be sacrificed
in order to meet resource constraints.

2.3 In-Network Computing

Network infrastructure such as switches, bridges, and
larger gateways connect edge nodes to each other, cloud-
lets, and to wider networks such as the Internet [29]. In-
network computing utilises these intermediate nodes to
perform processing of data, and since these nodes are in
closer proximity to data sources and are computational-
ly capable, they are not subject to many of the latencies
inherent in cloudlet or datacenter offload.

FPGAs are an attractive platform for in-network pro-
cessing due to their flexibility, high performance proces-
sing, and they are often already present within the net-
work infrastructure, used for packet processing and net-
work services. Studies have shown how their low laten-
cy connectivity can enable singificantly improved com-
puting offload in a network-attached setup [30]. This

approach has recently seen use within datacenter app-
lications [31, 18], and has been shown to improve la-
tency compared to traditional techniques. FPGA based
systems have been used to implement smart-switches or
smart-NICs, which perform data processing in addition
to their usual network functions. Unlike FPGA accele-
rators used in server based systems, these devices have
minimal software involvement, and do not rely on PCle
to transfer data from the network port to the accelera-
tion fabric.

3 Scenario

In [10], we compared computation latency and inge-
stion latency for a deep neural network (DNN) image
classification application using a variety of accelerated
computing platforms. That study demonstrated that in-
gestion latency can have a significant impact on the
overall latency reduction achievable for different plat-
forms. Images generated at a Raspberry Pi edge node
were transmitted to different offload platforms over a
network. Performing the DNN computation on the ed-
ge node itself resulted in a computing latency of 2.3s
due to the constrained capabilities of the embedded pro-
cessor on that node. Offload targets investigated inclu-
ded server based platforms where data enters the system
through a PCle network card and is moved to an acce-
lerator PCle card via a controlling application running
in Linux userspace. This is representative of a typical
host deployment in a cloudlet or datacenter. The same
experiments were also explored with network attached
FPGA accelerators integrated into a network switch.
In this deployment, packets received at the network in-
terface of the switch were forwarded to the accelerator
implemented on the same FPGA fabric depending on
pre-specified packet headers. From these experiments,
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Figure 1: Network scenario used for the discussion in this pa-
per. It is typical of an Internet of Things deployment.

-~ Regional

[ Internet Cloud

we measured an average ingestion latency of 60ms for
the entire image for a server based platform, and lms
for the network attached FPGA platform. While both
platforms resulted in the same reduction in computing
latency, down to 60ms, the low ingestion latency of the
network attached platform gave it superior overall la-
tency.

In [32], the authors carried out a series of experiments
measuring the network traversal time of packets from



a mobile phone source to various locations that could
be used to offload processing. This includes the eNodeB
base station, a telco central office re-architected as a da-
tacenter, the ISP datacenter, and various Amazon Web
Services (AWS) virtual machines (VMs) in different geo-
graphic locations. These different offload locations have
varying network distances to the data sources and hence
result in a range of different network latencies, as repro-
duced in Table 1.

Table 1: Network traversal time to various offload locations,
measured in [32].

Location Latency (ms)
BS — Base station 28
EdDC — Edge datacenter 41
ISPDC — ISP datacenter 62
RgCld — Regional cloud 7
IntCld — International cloud 151

The overall network scenario is typical of an Internet of
Things deployment, and can be seen in Figure 1: data
is generated at the edge node and transmitted to the
nearest access point, in this case, a base station a sin-
gle hop away. From there, it travels through multiple
network hops to a local edge datacenter, then to the
ISP datacenter, and finally to a cloud datacenter, which
can be located anywhere across the Internet. With each
successive hop, additional network latency is introduced.
Once the data reaches the target destination, it must be
ingested by the computing platform and processed, with
the result sent back to the edge node source. The time
taken to complete this process is the total application
latency.

Each of these networked locations could potentially host
computing platforms to perform this computation. Mo-
re capable accelerator hardware can also be deployed to
be shared across multiple edge node clients and perform
the computation with lower latency. Typically, with each
successive hop, there is an increase in available com-
puting resources and therefore opportunities to reduce
computation latency further. Each location can host a
range of computing platforms, which can reduce compu-
tation latency by varying amounts. For example, in [10],
performing the computation on a server in software as
opposed to the edge node reduced computation laten-
cy by 7x, and performing it on an FPGA accelerator
attached to the server improved computation time by
almost 40x compared to the edge node and almost 6x
compared to the server.

We want to examine the relationship and trade-offs pre-
sent between the amount the offload platform — such as
a server or hardware accelerator — reduces the compu-
tation time, and the communication latency due to mo-
ving data to the that platform. Using the results pre-
viously discussed we estimate total offload latency for

similar streaming applications offloaded onto different
platforms deployed at these different network locations,
while considering varying acceleration factors achieva-
ble for different platforms. We represent the degree to
which the computation latency is reduced by the offload
platform using an acceleration factor, such that:

latencycompbase

(1)

acceleration factor = tener
a enCyconlpofﬂoad

where the base computation latency is the latency when
performing processing at the IoT edge node. The accele-
ration factor is dependant on the platform being used to
carry out the computation, such as a server class pro-
cessor, or hardware accelerator like an FPGA, not on
the location where the platform is hosted.

The total application latency hence depends on that
computation time, the latency for data to be sent to
the offload platform, and the ingestion latency at that
platform, estimated as:

latenCYtotal = latenCyCOmp + latencyingestion

(2)
+ latenCYIletwork

While this model does not capture all the details of a

real implementation, such as network congestion, it is

detailed enough to allow us to reason about the mix of

computation offload platforms and where to locate them

for improved application latency.

4 Discussion

The results for total latency estimation for each loca-
tion and platform can be seen in Figure 2. Intuitively,
as the acceleration factor increases, the computation ti-
me decreases, reducing total latency. However this pro-
vides diminishing returns, as the communication laten-
cy begins to dominate as computation latency reduces.
This means that communication latency limits achie-
vable performance when the computational complexity
results in comparable computation latencies. Beyond a
certain point, further increasing the processing capabi-
lity of the offload platform results in minimal overall
latency improvement improvement.

Utilising network attached accelerator platforms, shown
with the dashed lines, reduces total latency further for
a given location, due to reduction of ingestion latency.
The communication latency required to reach platforms
further from the edge means less computationally capa-
ble platforms closer to the edge can sometimes provide
better performance overall than more capable platforms
further away. Similarly, utilising network-attached com-
puting platforms further away can result in lower latency
than a more local platform using server based compu-
te, since ingestion latency is significantly reduced. We
can see that a strategy of increasing computing capabi-
lity has limits in terms of achievable latency and that



reduction of communication latency is ultimately requi-
red to improve overall latency further.
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Figure 2: Estimated total latencies when computing is offloa-
ded to the network locations in Table 1, for varying acceleration
factors. Solid lines represent server based acceleration platforms,
and dashed lines represent network-attached acceleration plat-
forms.

The closer processing is moved to the edge, the grea-
ter the relative improvement achieved through network-
attached processing. The same can be seen as accele-
ration factor increases — the relative difference between
the server and server-less deployments increases in turn.
Figure 3 demonstrates this further, showing the relative
reduction in total latency achieved when using network-
attached over server-based acceleration at each locati-
on, and similarly shows that network attached platforms
yield greater benefits when applied to platforms closer
to the edge, and for higher acceleration factors. This
is because as the computation and network traversal
times reduce, through improved processing capabilities
and moving the compute closer to the source, the inge-
stion latency becomes a relatively more significant con-
tributor to overall latency. For example, for an accele-
ration factor of 40x, for a base station offload (BS),
using server based computing, total latency was around
140ms. Ingestion latency contributed 60ms to this total,
over 40%, greater than each of the network traversal and
computation latency. By comparison, using a network-
attached accelerator resulted in a total latency of 85ms,
and ingestion latency contributed only 1%.

These results are based on the characteristics of the
DNN application used in [10], which had a base com-
putation latency of 2.3s on the Raspberry Pi edge no-
de. In this situation, the computation latency by far
outweighs the communication latency, so benefits can
be achieved without requiring a significant acceleration
factor on the offload platform. We now explore how this
analysis changes when the balance of computation laten-
cy and communication latency changes. Figure 4 shows
the results when the base computation latency is 200ms
as opposed to 2.3s, and hence closer to the magnitude
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Figure 3: Relative reduction of total latency provided by
network-attached accleration compared to server-based, when
computing is offloaded to the different networked locations in
Table 1.

of the network latency. In this scenario, we can see that
depending on the location and the ingestion latency of
the platform, a greater acceleration factor is required to
justify offloading. The base station (BS) must be able
to perform processing at least 3x as fast as the edge
node if using a server based platform, but only around
1.4x faster when using network-attached acceleration.
In this situation the furthest AWS instance as a ser-
ver based accelerator can never achieve an improvement
over the edge node, even for extremely large accelerati-
on factors, though network-attached acceleration would
still be feasible.
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Figure 4: Estimated total latencies when a 200ms base com-
putation time is offloaded to the different networked locations
in Table 1, for varying acceleration factors. Solid lines represent
server based acceleration, and dashed lines network attached.
The black dotted line shows the base computing latency.

When the base computation time is reduced further, to
100ms, an even greater acceleration factor is needed to
justify offload, as shown in Figure 5. Even at the base
station, the resource closest to the edge node, achieving



increased latency performance would be a challenge un-
less using network attached processing. Any of the other
platforms wouldn’t achieve improvements without utili-
sing this, regardless of acceleration factor.
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Figure 5: Estimated total latencies when a 100ms base com-
putation time is offloaded to the different networked locations
in Table 1, for varying acceleration factors. Solid lines represent
server based acceleration, and dashed lines network attached.
The black dotted line shows the base computing latency.

This study shows that deploying network-attached acce-
leration offers new opportunities to offload smaller IoT
tasks that may have traditionally not have benefited
from offloading. Additionally, more lightweight accelera-
tors can be deployed that require less computing power,
while still achieving reductions in total latency. These
network-attached accelerator platforms also scale better
to servicing multiple IoT edge nodes, as shown in [10].
One factor not considered in this study is the cost of
deploying hardware accelerators to reduce latency. This
analysis can be carried out in further work. The mathe-
matical model detailed in [30] can also be used to model
cost.

5 Conclusion

Computational offload is an attractive method of redu-
cing processing time for latency sensitive applications.
While computation time is reduced, there is an associa-
ted communication latency caused by the traversal to
the offload location, and the time taken to move the data
to the processing platform at that location. Computatio-
nal resources can be increased through the use of more
powerful hardware, or using specialised accelerators. We
presented a case study for an image processing applica-
tion where an edge node offloaded processing to one of
several locations, ranging from a base station a single
hop away, to a cloud datacenter in another continent.
This demonstrated that the communication cost limits
the achievable total latency reduction when increasing
the computational resources available. While efforts can

be made to improve hardware and bring down proces-
sing time, this offers diminishing returns.

Reducing the communication time through moving the
processing closer to the data source can reduce the total
latency. However this only effects the time taken for data
to traverse the network to the offload location. Our case
study showed that the ingestion latency, the time taken
for data to traverse the network interfaces and software
stacks of the compute platforms, is a considerable contri-
butor to the overall latency. Utilising network attached
processing platforms that bypass these interfaces redu-
ces ingestion latency, and thus allows greater potential
to reduce the total latency through both moving com-
pute to the edge, and increasing hardware capability. As
we improve computation, and reduce network traversal,
the next step to increasing performance is tackling how
data is managed consumed by the compute.

This opens up opportunities to offload smaller tasks that
may have traditionally not have benefited from com-
putational offload. Likewise, it could enable the use of
more lightweight processing that requires less hardware
resources, performing more, with less — as well as open
up hardware for sharing across multiple applications or
client devices.
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