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Abstract—Serverless computing has become a popular cloud
computing paradigm. However, its deployment abstraction entails
significant performance overheads. We explore the potential for
enabling serverless computing on FPGAs and present some early
results that show the concurrency and scalability benefits on a
stream processing workload. The FPGA enables flows of network
data to flow directly into accelerators, which is beneficial for
scenarios involving large packets and multiple request streams.

I. INTRODUCTION

Serverless computing is a cloud computing execution model
in which the cloud provider allocates computing resources to
customer applications on demand. It abstracts server manage-
ment away for application developers. Developers upload their
application code, composed of chained function invocations,
and the provider determines how to allocate these to computing
resources (servers) on demand. Users are then billed only for
the time that their functions are running. This has the benefit
for the user of not having to manage computing resources, and
for the provider of being able to allocate functions to resources
in a way that best suits their infrastructure.

However, current serverless computing frameworks have
three major overheads:
1) Communication overhead due to clients sending data to
the cloud through the network. 2) Computing overhead due
to use of high-level languages and libraries. 3) Abstraction
overhead as these functions are run in a containerized envi-
ronment and invocations of serverless function go through a
full network stack.

FPGA accelerators could address above problems and en-
able serverless computing with efficient computation and
low-overhead composition. The fine-grained parallelism that
is exploitable on FPGAs is well suited to the types of
stateless functions used in serverless, which would reduce the
computing cost. The serverless programming model breaks
applications down into compact functions. FPGAs can be
directly interfaced over the network, leading to significant re-
ductions in communication overhead for these small functions.
A serverless abstraction can be built in the FPGA hardware
to minimise the abstraction overhead while still offering the
benefits of the FPGA such as fast reconfiguration (function
invocation). Finally, FPGAs can be deployed outside of the
datacenter for a more distributed, and hence lower latency,
response.

The metrics considered when evaluating serverless com-
puting systems are communication performance, startup
latency, and resource efficiency and performance isola-
tion [1]. By leveraging specific inherent characteristics of
FPGAs, we can target these metrics. FPGAs are well suited
to packet processing, and open source implementations of
hardware network stacks are available that can be extended,
e.g. Easynet [2] for TCP/IP. Direct ingestion of network
data for processing can dramatically reduce the overhead of
the FPGA as an accelerator [3]. FPGAs also have a power
profile and form factor that can support a wide range of
deployment scenarios when networked [4], [5]. Suitable high
level abstractions can be built to manage the FPGA [6]. Partial
reconfiguration (PR) can be exploited to support multi-tenancy
with low startup time in the range of tens of milliseconds.
Multiple PR regions can be chained together for low la-
tency function chaining, and this can be managed via the
network [7]. Lastly, in terms of multi-tenant efficiency and
isolation, it is possible to initialize multiple TCP connections
and deliver isolated performance at the hardware level, as
demonstrated in Multes [8].

In this paper, we evaluate concurrency and scalability of
a stream processing workload and discussed the potential
benefits that can be provided by mapping serverless functions
to network attached FPGA. In addition, we suggest future
research directions in this area.

A. Experimental Setup

We deploy a Streaming Top-K workload in three settings:
serverless, which uses a serverless framework; baremetal,
which runs the same code on a dedicated server; and FPGA,
which integrates a hardware accelerator with the open source
HLS TCP/IP stack in [2].

Our server is based on an AMD Ryzen Threadripper PRO
3975WX (32 Core @ 3.5 GHz) processor with 512 GB
DDR4 3200 DRAM running Ubuntu Linux 18.04. For the
serverless platform, we deploy version of 0.6.23 of the ‘fn’
framework. In the baremetal setup, we directly execute the
function invocation through a web server (using the default
HTTP Python package). In both cases, we use a reverse proxy
(request interceptor) to measure the latency of each request
invocation from an external client that serves as a closed-loop
load generator as shown at the top of Fig. 1.
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Fig. 1: Experimental setup.
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Fig. 2: Top-K workload comparison on three platforms.

The FPGA setup is evaluated using an NVIDIA-Mellanox-
ConnectX-6 SmartNIC directly connected to a Xilinx Alveo
U280 accelerator board using a 100Gbps DAC cable in the
same server machine. Single request latency measurement
is done by extracting timestamps from the headers of TCP
packets that are captured on the NIC interface using Wireshark
as shown at the bottom of Fig. 1.

B. Scalability with Packet Size

Sequences of 1000 requests with sizes of 64B, 128B, 256B,
1024B, 2048B, and 4096B are generated by the client. The
cold start effect of the serverless platform is filtered out. The
left plot in Fig. 2 shows average latency (on a log scale) for
all packet sizes. Mapping Top-K on FPGA improves latency
by 42× to 53× and 736× to 2473× compared to baremetal
and serverless, respectively. The serverless platform shows a
significant overhead when the invocation size increases from
256B to 512B. The latency slightly increases on the baremetal
platform as the invocation size increases, while the FPGA
platform maintains stable latency for all sizes of invocation.

C. Concurrent Requests

The client now generates N concurrent invocations (TCP
requests in the FPGA case). For baremetal and serverless,

the latency measurement starts when the first function re-
quest reaches the request interceptor and stops when the N th
response is collected. For FPGA, the latency measurement
starts when the first TCP packet is sent by the NIC and
ends when the N th response is collected, which includes
the three-way handshake, data transmission, but excludes the
four-way handshake closing stage of the TCP connection.
All experiments are repeated 10 times. The right plot in
Fig. 2 shows the overall batch latencies divided by N . The
first result of each batch is filtered out for serverless due
to the cold start effect. The results show that the baremetal
platform is not capable of handling multiple requests, since
the latency per request increases 75× from single to double
requests. On the other hand, both the FPGA and serverless
platforms demonstrate a decreasing trend in latency per request
as the number of requests increases, indicating good scaling
with parallel requests. The FPGA shows 0.31× latency per
request for 64 parallel requests compared to a single request,
suggesting the FPGA has better concurrency performance.

II. FUTURE WORK

Our preliminary experiments focus on single function of-
floading. Function to function communication is essential
in serverless computing. Investigating the performance of
offloading a function chain across multiple FPGAs, as well as
combining sub-chains into a single FPGA, will be explored.

To support this, we are evaluating and developing a number
of commonly used stream processing functions to be able to
evaluate larger application benchmarks from the serverless and
Internet of Things areas.

Secondly, other performance metrics, such as energy con-
sumption, will be evaluated to further justify the use of FPGAs.
Apart from saving energy on computing, the benefit of direct
network ingestion should result in significant energy gains.

Finally, we will develop a management interface that auto-
mates function invocation, chaining, as well as providing in-
strumentation for evaluation. This will ensure isolation, while
also managing multi-tenancy through partial reconfiguration.

We expect this project to enable the idea of efficient
serverless computing outside the datacenter.
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