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Abstract—Wireless communication systems rely on aggressive
spatial multiplexing Multiple-Input Multiple-Output (MIMO)
access points to enhance network throughput. A significant
computational hurdle for large MIMO systems is signal detection
and decoding, which has exponentially increasing computational
complexity as the number of antennas increases. Hence, the
feasibility of large MIMO systems depends on suitable imple-
mentations of signal decoding schemes.

This paper presents an FPGA-based Sphere Decoder (SD)
architecture that provides high-performance signal decoding for
large MIMO systems, supporting up to 16-QAM modulation.
The SD algorithm is refactored to map well to the FPGA archi-
tecture using a GEMM-based approach to exploit the parallel
computational power of FPGAs. We implement FPGA-specific
optimization techniques to improve computational complexity.
We show significant improvement in time to decode the received
signal with under 10~ BER. The design is deployed on a Xilinx
Alveo U280 FPGA and shows up to a 9x speedup compared
to optimized multi-core CPU execution, achieving real-time
requirements. Our proposed design reduces power consumption
by a geo-mean of 38.1x compared to CPU implementation, which
is important in real-world deployments. We also evaluate our
design against alternative approaches on GPU.

Index Terms—Wireless, MIMO, field programmable gate ar-
rays, signal decoding, sphere decoder.

I. INTRODUCTION

Modern and emerging applications are increasingly reliant
on high-performance networks, covering diverse use cases
such as video conferencing, Internet of Things (IoT) offload,
and collaborative automotive applications. Such growing de-
mand has pushed wireless network technology to enable higher
capacity and throughput requirements without breaking the
constraint of real-time response (we assume the real-time
response to be within 10ms [1]). Multiple-Input Multiple-
Output (MIMO) systems are an established approach to ad-
dress increased demand, and it features in cellular and local-
area networking standards [2, 3]. Detection algorithms are one
of the main hurdles in realizing such aggressive spatial multi-
plexing systems, where there is a trade-off in performance (i.e.,
in terms of accuracy) and complexity (i.e., in terms of time
to solution) between utilizing linear and non-linear detection
schemes [1,4-7].

Linear decoders, such as {Maximum Ratio Combining
(MRC), Zero Forcing (ZF), and Minimum Mean Square Error
(MMSE)}, are characterized by low complexity but have poor
Bit Error Rate (BER) performance [1,8,9]. On the other

hand, non-linear decoders exhibit good BER performance but
are computationally intensive. The complexity of non-linear
decoders is exponential, which makes it challenging to achieve
real-time processing when scaling the number of antennas in
MIMO systems.

The Maximum Likelihood (ML) [10] decoder is considered
to be the optimal non-linear decoding algorithm; however, it
incurs very high complexity [1,8]. The Sphere Decoder (SD)
algorithm [11, 12] is a variant of the ML decoder that aims to
reduce its complexity by restricting the search space to process
selected candidate nodes efficiently. To achieve this, most SD
methods use heuristics to identify promising candidate tree
nodes during exploration, which may subsequently impact the
accuracy of the detection algorithm [4, 13].

While the SD algorithm reduces the computational com-
plexity of signal decoding, it still scales exponentially, sig-
nificantly limiting the scalability of MIMO systems. Conse-
quently, the wireless communications community is currently
assessing the application of hardware accelerators to reduce
signal decoding time. High-Performance Computing (HPC)
architectures, such as GPUs, provide significant computational
power. However, computational time cannot be the only focus
of optimization; power efficiency must also be considered
since such signal detection systems are usually deployed in
remote base stations with a limited power budget. Furthermore,
the overall application latency, including the accelerator, must
be considered. Hence, FPGAs are a promising solution for
addressing this trade-off by providing power-efficient, high-
performance designs with flexible interconnectivity. Moreover,
FPGA boards have high-speed transceivers that are very ben-
eficial when deploying MIMO systems in a real-world setup.
While CPUs and GPUs would require data to be streamed
into memory and then accessed by the computational device,
FPGAs have the hardware capability to stream data directly
into the computational pipeline, bypassing the memory access
step.

This paper presents an FPGA-based signal detection ac-
celerator using the SD algorithm. We adopt a GEMM-based
variant of the SD algorithm proposed in [1] that refactors
the algorithm from memory-bound to compute-bound. We
combine this approach with the Best-First Search tree traversal
strategy proposed in Geoshpere [14] to mitigate the complexity
of the Breadth First Search (BFS) tree traversal in [1]. The



approach proposed in [1] achieves almost real-time decoding
with acceptable BER performance at a Signal-to-Noise Ratio
(SNR) of 17 dB by utilizing GPU acceleration. However,
our approach exploits FPGA data- and pipeline-parallelism to
reach comparable BER performance at an SNR of only 4 dB
while showing significant improvement in the decoding time.

Direct porting of the SD algorithm to the FPGA shows
comparable performance to CPU execution using the vendor-
optimized Math Kernel Library (MKL). Hence, we apply
FPGA-specific optimizations to enhance decoding time. Com-
pared to an optimized multi-core CPU implementation, our
optimized FPGA design results in up to 9x speedup. The
contributions of this work are as follows:

o We devise a hardware-oriented design for the SD algo-
rithm that maps well to FPGAs with hardware optimiza-
tions that improve compute complexity without impacting
BER performance (Section III).

o We demonstrate that our designs outperform an opti-
mized CPU implementation allowing the accommodation
of larger MIMO systems without exceeding real-time
constraints (Section IV).

o We demonstrate considerable energy savings, compared
to the optimized CPU implementation (Section IV-B).

e We show that the Best-First Search strategy adopted
in our design significantly reduces the search space,
significantly accelerating the decoding process compared
to an alternative GPU implementation based on heuristics
(Section IV-F).

II. BACKGROUND & LITERATURE REVIEW
A. System Model

A typical MIMO system with M transmitters and N re-
ceivers communicating via a channel is shown in Figure 1.
The transmitter sends M data streams represented as vector
s = [so, $1, ..., Sm—1], where s; belongs to a finite alphabet
set of complex constellations denoted by 2. We consider a
small-scale fading channel represented as channel matrix H,
which is an NxM matrix where h;; is a complex random
variable with mean O and variance 1, modeling the fading
gain between transmitter j and receiver i. The received signal
y = [yo,yl,...,yN_l]T can be modeled as in Equation 1,
where n = [ng,n1,...,nn—1]" represents the additive white
Gaussian noise, where n; is an independent zero-mean cir-
cularly symmetric complex Gaussian random variable with

variance o2.

y=Hs+n. @))

The ML decoder, which is considered to be the optimal non-
linear decoding algorithm, calculates a posterior probability
for all possible transmitted vectors s € S, where |S| = |},
as shown in Equation 2. The ML decoder returns the vector
s that minimizes the distance between the received vector y
and the assumed noiseless vector H's. While the ML decoder
explores all possible states, the SD algorithm limits the search
space within a radius to reduce complexity.
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Fig. 1: Typical MxN MIMO system.
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B. Sphere Decoding (SD)

The SD algorithm solves Equation 2 by enumerating the
points inside a hyper-sphere of radius r around the received
point y. The sphere radius r is set initially by the user to prune
the search space, as shown in Equation 3; however, it can be
subsequently updated at run-time to prune the search space
further.

ly — Hs||* < r? 3)

The SD algorithm represents the problem as a search tree
that enumerates all possible combinations of the transmitted
vector. The algorithm traverses the search tree to identify the
best path minimizing the distance from the received signal y.
Tree nodes evaluations are compared with the pre-set radius r
to identify and prune non-promising tree branches, thereby
reducing the computational complexity. Figure 2 illustrates
the tree pruning process, where the value inside each node
represents the Partial Euclidean Distance (PD) of the node.
The tree represents the search space for three transmitters with
BPSK modulation and a sphere radius » = 10. When the PD
evaluation of a node exceeds the preset radius, the branch is cut
under the assumption that it yields non-promising leaf nodes,
thereby reducing the search space. The nodes highlighted in
red show the path to the optimal solution.

We adopt a variant of the SD algorithm proposed in [1],
which is a GEMM-based approach. This refactors the SD
algorithm from memory-bound to compute-bound to be able
to exploit the aggressive computing capability of hardware
accelerators like GPUs and FPGAs. This transformation is
achieved by casting memory-bound matrix-vector multipli-
cation (i.e., Level-2 BLAS) to matrix-matrix multiplication
operations (i.e., Level-3 BLAS). The optimization problem
shown in Equation 3 is translated to a least-square problem
by performing a QR decomposition of the channel matrix
H = QR, where Q € CN*¥ is an orthogonal matrix and
R € ON*M s an upper triangular matrix. This translation
transforms Equation 3 to be represented as shown in Equa-
tion 4:
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Fig. 2: Sphere Decoding example tree showing the search space for three transmit antennas with BPSK modulation and radius » = 10.
Where, S; represents the decoded symbol value for that edge, and the number inside each node is the Partial Distance (PD) evaluation of
the node. The final vector S at leaf nodes represents the entire decoded signal.

Algorithm 1: SD Algorithm
Data:

lly — Hs||* = |y — QRs|?

H . .
= |Q(Q"y — Rs)|” Received signal y
“) .
= |Q"y — Rs||? Constellation order 2
= ||7 — Rs|? Channel matrix estimation H
’ Noise variance o2
where § = Qy. Hence, the supposed transmitted vector Radius r
§ is evaluated by solving the minimization problem shown in Result:

Equation 5 and elaborated in Equation 6 as follows.

Decoded signal vector §

o 1 List < root;
2 while List # 0 do
minng(sM_l,...,sM_k) ®) 3 | Node :ioop(List);
k=1 4 Branch(Node) ; /+ Generate Node;i_q */
M-1 5 foreach Node; do
gk(sM—h ...,S]\/I—k) = HgM—k - Z (T(Mfk)ﬂ’si)HZ (6) 6 if E(Nodez) < r then
i=M—k /* E() computes Node PD */
The computational profile of the SD algorithm includes 7 if Node; = Leaf node then
three main processes: branching, evaluation, and pruning, as 8 r = E(Node;); .
shown in Algorithm 1. The branching process generates all { * Update sphere radius  «/
possible successors of a tree node, which models enumerating o 5= Symbols(Nodclai);
all possible states of one symbol in the transmitted vector. /* Best solution so far =/
Then, the evaluation process computes the Partial Distance 10 else . )
(PD) of the generated tree nodes, which estimates the distance 1 ‘ List = List U Node;;
of these nodes from the received signal. Finally, the pruning 12 end
process uses the evaluated PDs of the generated nodes to check B else
if they reside within the sphere radius r to cut unpromising 1 ‘ Prune branch;
branches. 3 end
The tree exploration strategy can be Breadth First Search I: en dend

(BFS), Depth First Search (DFS), or Best First Search (Best-
FS). While BFS exposes more parallelism, DFS and Best-FS




explore leaf nodes first. This paper focuses on the leaf-node
biased exploration strategies for faster sphere radius update,
which helps prune the search space more efficiently than BFS.
More specifically, we target Best-FS exploration as it targets
better quality leaf nodes (in terms of PD) by sorting children
nodes generated at each tree level. The sorting overhead is
negligible since its complexity depends only on the modulation
parameter and is dominated by the GEMM complexity.

C. Related Work

Monte-Carlo Tree Search (MCTS) has been successful in
decision-making problems and has been applied to MIMO
signal detection by Chen et al. in [13], then later for antenna
selection in [15]. The MCTS-based MIMO system proposed
in [13] maps MIMO detection to MCTS and implements it
in hardware. Their proposed approach eliminates the need for
costly matrix inversion or Gram matrix computation. Multiple
optimization techniques are utilized to enhance the decoding
process’s complexity and performance. They limit the search
space using a pre-value network, reduce signal interference
using a level re-order method, and optimize BER using a
multi-search process. The design is implemented on 65 nm
CMOS for a 64x8 MIMO detector achieving 10~¢ BER at
SNR of -0.4 dB with QPSK and 2.75 dB with 16-QAM.
In other efforts to limit the search space, a statistical tree
pruning approach was proposed in [16] to eliminate non-
promising tree branches. While their heuristic shows good
BER performance, their approach does not satisfy the real-
time constraint successfully.

In an attempt to optimize communication between parallel
workers of MCTS, [17] proposes the decomposition of the
MCTS decision tree into two separate data structures, State
Table (ST) and Upper Confidence-bounded Tree (UCT). While
UCT is mapped to an optimized FPGA pipeline for in-tree
computations, the ST keeps an index for each node in the
tree. ST is mapped to the CPU to keep the search tree’s state
information. Parallel send and receive buffers are implemented
to optimize data flow between parallel CPU threads and the
FPGA’s pipeline. This approach proved scalable for many
parallel worker threads and achieved up to 3x through-
put compared to state-of-the-art CPU-based parallel MCTS
solvers. However, this was applied to more traditional MCTS
applications.

Nikitopoulos et al. [4] propose a VLSI architecture that
massively parallelizes the search tree of sphere decoders while
keeping complexity close to that of the optimal sequential
decoders. They employ a multi-sphere design introducing the
“tree of promise” concept where symbols are described by
their relative ordered distance to the received signal. They
partition the tree of promise and process it in parallel; however,
the partitioning overhead, which scales only linearly, is con-
sidered to be an offline computation. While the sub-trees are
nearly data-independent, they still require a synchronization
step once they reach the first leaf node to communicate the
minimum euclidean distance to all parallel sub-trees. They
achieve a 29x reduction in latency for a 16-QAM 10x10

MIMO system using 32 processing elements compared to
sequential SD. An alternative approach was proposed by
Husmann et al. in [18], antipodal detection and decoding
mechanism. The premise of this work is that the antipodal
detector either results in a reliable solution or non at all
(erasure) to skip the complexity of the workload if a promising
solution is unlikely. They propose a belief propagation-based
decoder that deals with the erasure and attempts to reconstruct
a correct signal.

While the workload of SD can be embarrassingly parallel
at each level of the search tree, there is a necessary sort-
ing operation at the end of each level’s computation that
imposes data dependency for the following data set. Hence,
scalability is challenging to achieve for such an algorithm.
The fixed complexity SD (FSD) sacrifices ML optimality
to enhance scalability. FSD is massively parallelizable with
minimal dependencies among the parallel tasks [5]; however,
this approach is very resource hungry, where it requires the
available number of PEs to be a multiple of the transmitted
constellations [9].

Other works combining both GPU and FPGA accelerators
are proposed in [19]. Their approach includes a pre-processing
phase that prepares the SD search tree, then offloads it to
either the GPU or the FPGA. The work presented in this paper
eliminates the communication overhead by building the search
tree directly in the FPGA’s hardware.

The work proposed in [1] uses a GEMM-based variant
of the SD algorithm on GPUs. However, they rely on the
BFS search strategy to enhance the GPU hardware utilization
but ultimately increase the overall complexity. On the other
hand, Geosphere [14] is a sphere decoding-based system that
uses geometric reasoning on the signal constellation to define
how to traverse the search tree. Geosphere utilizes the Best
First Search approach, as previously explained in Section II-B.
This paper presents an approach combining the strengths of
both Geosphere [14] and the GEMM-based approach [1] to
overcome the MIMO complexity challenge.

III. SPHERE DECODER IMPLEMENTATION ON FPGA

This section details the implementation of the SD algorithm
on FPGA. The scope of this work targets large MIMO systems
that have proven to be prohibitive in terms of complexity when
using multi-core CPUs. Hence, we discuss the implementation
of a hardware-accelerated SD algorithm and the FPGA opti-
mizations employed to reduce the time to solution.

We start by profiling the SD algorithm to identify bottle-
necks and understand the computational requirements for each
phase of the execution flow. We discuss details of the execution
profile and elaborate on its mapping to the FPGA’s pipeline.

A. SD Execution Profile

The search tree that models the SD algorithm includes M
levels, where each level corresponds to a constellation symbol
of its respective transmitter. The tree is built dynamically as the
algorithm progresses in search of the decoded signal. Hence,
the tree’s root node is initialized with all symbols in the vector
5 unknown.
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1) Phase 1 (Branching): The branching process generates
all possible successors to the tree node being processed. Child
nodes at level L inherit the parent’s known symbols and
enumerate all possibilities of the symbol s7,. A matrix is then
constructed to model the tree’s current state at each node.

2) Phase 2 (Evaluation): The evaluation of each node’s
Partial Distance (PD) includes a matrix multiplication followed
by a norm computation. For each node in the tree, a block of
the tree state matrix is multiplied by its corresponding block
in the channel matrix. The resulting matrix is normalized with
the received signal to calculate the node’s PD.

3) Phase 3 (Pruning): This phase has a significant impact
on the complexity of the SD algorithm. During this phase, the
algorithm determines which branches to prune to reduce the
search space. Hence the sorting process plays an important
role, where the nodes at the current level being evaluated
are sorted based on their PDs. The algorithm favors branches

Channel
Matrix

with lower PDs since they are more likely to lead to a more
promising solution. Sorting is conducted at the end of each
level generation to prioritize lower PD nodes, as shown in
Figure 3.

The computational profile of the SD algorithm is sequential
in nature, as it requires a synchronization step to update
the sphere radius after reaching a leaf node. While this
synchronization step is a performance hurdle, it significantly
reduces the time to solution via efficient pruning of the
tree search space. The criteria upon which a branch is cut
depends on the sphere radius. Figure 3 shows an example
of SD algorithm progression in the search tree. The value
inside each node represents its Partial Distance (PD). The data
structure on the right of the figure is a visualization of the
tree list data structure and explains how nodes are inserted in
order. For illustration purposes, the numbers inside the node
represent the PD evaluation of each node; however, in the
actual implementation, this data structure keeps node IDs that
link to an entry in a separate data structure, the Meta State
Table (MST).

B. FPGA Pipeline Overview

Here, we discuss mapping the SD algorithm to a pipelined
data-flow architecture implemented on the FPGA. An ab-
stract view of the pipeline is shown in Figure 4. Initially,
data is transferred once through PCle from the host to the
FPGA’s High Bandwidth Memory (HBM). This is a one-
time negligible overhead that is evaluated empirically to be
less than 3% of the overall execution time. The search tree
construction is fully implemented in the FPGA fabric to avoid
repeated communication with the host. This design choice
integrates well with real-word deployment by utilizing the high
bandwidth of the FPGA’s streaming I/O interfaces.

Received
Signal

GEMM

-

NORM

Generate

%»l&

Children
Data Input Branching Evaluation Pruning

Fig. 4: Dataflow pipeline implemented on the FPGA, detailing the building blocks of the hardware accelerator.



The branching phase modules exploit pipeline parallelism to
generate P work tasks, where P is the modulation factor of the
MIMO system and corresponds to the number of children gen-
erated by each node. A tree state matrix is constructed/updated
with the generated node information and stored in the on-chip
dual-port Block RAM (BRAM). The BRAM storage allows
fast single-cycle memory access for this intermediate data
during phase 2 of the pipeline, the evaluation.

The evaluation phase combines data and pipeline parallelism
to efficiently process the evaluation of the generated nodes at a
specific level in the tree. An optimized GEMM engine is used
to carry out the large number of matrix multiply operations
and feeds the results to the normalization module (NORM) for
final PD calculation. Partitioned arrays are used to store the
intermediate data of the generated branches on-chip, pending
a decision to commit from the pruning module.

C. FPGA-Specific Optimizations

Three main challenges were identified when mapping this
problem to an FPGA pipeline: the large number of GEMM
floating-point operations, the irregularity of the memory ac-
cesses, and the dynamic nature of the problem. These chal-
lenges require addressing if the performance of the FPGA
accelerator is to be maximized [20,21]. Here, we outline the
techniques we used to yield an efficient FPGA design.

1) Optimized GEMM Engine: Not only is floating-point
matrix multiplication itself a compute-intensive operation, but
it is executed no less than % in the worst-case scenario,
where P is the modulation factor, and N is the number of
receiver antennas. Observing the execution profile showed that
this operation is a significant bottleneck; hence we address this
challenge by implementing a highly optimized GEMM engine.
The implementation is adapted from the Xilinx BLAS library
[22], which includes BLAS engines that implement memory
and control logic to compose complex BLAS functions. These
present an overhead for our specific application since we only
require the GEMM operation. Hence, we extract and isolate
the GEMM engine to make it efficient.

The GEMM engine is constructed as a systolic array that
utilizes floating-point MAC units built using the FPGA’s DSP
slices. A two-dimensional mesh of MAC units is augmented
with control logic and connected to single-cycle access BRAM
memory blocks. This configuration ensures smooth matrix
multiply computation minimizing bubbles in the architecture’s
pipeline.

2) Pre-Fetching Unit: Inputs to the GEMM engine include
the channel matrix, the received signal, and the tree state
matrix. However, only partial blocks of these matrices are
used for computation. Which data should be extracted from
these large matrices depends on the node currently being
processed and its level in the search tree. Moreover, accessing
these blocks does not have a regular pattern. A fixed memory
access stride can be defined if the whole search tree needs
to be explored. However, pruning the search space is one of
the critical features of the SD algorithm, which leads to an
unpredictable traversal path of the search space. Hence, this
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Fig. 5: Visualization of the Meta State Table (MST). It represents
the database used to store the tree state data, which is partitioned
corresponding to each level’s data.

portion of the computation’s memory access pattern becomes
irregular.

We implemented a pre-fetching unit that pre-calculates the
required memory addresses needed by the GEMM engine via
level and node information. Then, the pre-fetching unit extracts
the required data and buffers it contiguously to be easily
offloaded to the GEMM engine Block RAMs. This double
buffering approach eliminates the high latency memory ac-
cesses that the matrix multiply operation would have imposed.

3) Meta State Table (MST): The search tree is built dynam-
ically in the FPGA’s re-configurable fabric to avoid communi-
cation with the host. Moreover, the data structures responsible
for storing the tree state information are dynamic in size.
Dynamic data structures are not supported on the FPGA and
pointer-to-pointer addressing is very inefficient in terms of
performance. Hence, we implement a Meta State Table (MST).
This is a database that keeps track of the current status of the
search tree. We use it to index the tree nodes to overcome
the challenge of dynamic tree construction. Furthermore, it
decouples pointer-based addressing by keeping an updated
copy of the tree state matrix.

The tree state matrix is a matrix that models the state of
the tree based on the recovered symbols of a node’s parents
tracing its branch back to the root node. Instead of storing
the whole matrix in one large data structure, the MST keeps
a record of a node’s corresponding block in the tree state
matrix, as shown in Figure 5. Such a node-oriented data
structure facilitates partitioning the memory allowing single-
cycle access to the data. Moreover, it eliminates pointer-
based addressing, significantly impacting the FPGA design’s
performance.

4) Resource Utilization Optimization: The resource utiliza-
tion of the generated hardware is a very important aspect
of the design. If the synthesized pipeline consumes more
than 50% of the available resources on the FPGA, one may
not be able to instantiate a second pipeline path to exploit



TABLE I: FPGA resource utilization

Baseline  Baseline  Optimized Optimized

4-QAM  16-QAM 4-QAM 16-QAM
Freq (MHz) 253 253 300 300
LUTs 29% 50% 11% 23%
FFs 20% 27% 7% 11%
DSPs 8% 15% 3% 7%
BRAMs 11% 14% 8% 10%
URAMs 14% 60% 7% 30%

TABLE II: Power profile for CPU and FPGA

10x10 15x15 20x20 10x10

4-QAM  4-QAM  4-QAM  16-QAM
Power CPU 82 93 135 142
(W) FPGA 8 11.7 12 12.8
Exec CPU 7 443 350.6 176.6
(ms) FPGA 2 9.4 102.5 46.88
Energy  CPU 0.574 4.11 473 25.1
@ FPGA 0.016 0.11 1.23 0.6
Energy Reduction 35.8% 36.8x 38.4x 41.8%

more data parallelism. Hence, resource utilization is a very
important aspect to consider when designing the hardware. To
allow room for parallelization in the future, we optimize the
hardware design to reduce resource utilization.

We simplify the control logic by implementing a separate
design for each modulation configuration (e.g., 4-QAM or 16-
QAM). This helps eliminate much of the control logic re-
sponsible for sequencing the operations. Moreover, we employ
buffer reuse techniques to reduce the on-chip memory usage
of BRAM and URAM memory blocks. These techniques help
save a significant amount of resources that may enable future
work on exploring data parallelism to enhance the performance
of the SD algorithm further.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental platform used in this work includes a
Xilinx Alveo U280 FPGA card hosted in a workstation with
an AMD Ryzen CPU via PCle. The Alveo U280 is equipped
with 8GB of High Bandwidth Memory (HBM) accessible over
32 channels in addition to 32 GB of DDR4 memory [23].
It also includes 4032 Block RAMs (18Kb each) and 960
URAM blocks (288Kb each). The FPGA designs are imple-
mented using OpenCL/C++ High-Level Synthesis (HLS) and
synthesized using Vitis 2020.2, with the designs running at an
approximate frequency of 300 MHz. The 64-core CPU runs
Ubuntu 18.04. We use Intel Math Kernel Library (MKL) in
association with the Boost library to implement the optimized
CPU version of the SD algorithm. The testing data set is
randomly generated using Monte Carlo simulations to emulate
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Fig. 6: Execution time for 10x 10 MIMO with 4-QAM modulation.

the MIMO system. While 4 x4 MIMO is a realistic current test
case, we scale up testing to a 20x20 MIMO configuration.

B. Power Profile and Resource Utilization

Due to the limited resources on the FPGA board, resource
utilization is usually a concern. We show the resource uti-
lization for our implemented designs in Table I. The baseline
implementation is a direct port of the SD algorithm to the
FPGA. The utilized portion of Look Up Tables (LUTs) and
Ultra RAMs (URAM) in the baseline implementation prevent
the instantiating of multiple pipelines. However, applying the
optimization techniques explained in Section III shows a
significant reduction in resource utilization.

We performed power profiling for the CPU using
AMDuprof and for the FPGA using Vitis Analyzer. The
power consumed during signal decoding for all the design
configurations is detailed in Table II. The energy consumed
by each test case shows a significant advantage to the FPGA
implementation, reducing the energy consumption by a geo-
mean of 38.1x compared to the CPU implementation.

C. Performance Analysis

The baseline FPGA implementation is a direct port of the
SD algorithm’s C++ code compiled using Xilinx HLS tools
(After eliminating dynamic memory structures and global
variable declarations). As shown in Figure 6, the baseline
implementation shows comparable performance to the CPU
with a slight advantage for the FPGA. Around 1.4x speedup
is observed at an SNR of 4 dB for a 10x10 MIMO con-
figuration with 4-QAM modulation. While for that MIMO
configuration, all the implementations (CPU, FPGA-baseline,
FPGA-optimized) satisfy the real-time constraint requirement
(£ 10ms), the optimized FPGA implementation shows a
significant speedup of 5x compared to CPU execution at an
SNR of 4 dB.
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Fig. 7: Bit Error Rate (BER) for 10x10 MIMO with 4-QAM
modulation.

In designing the hardware architecture, we are careful to
mimic the execution profile and operational sequence of the
CPU execution. Hence, the employed hardware optimizations
enhance the design’s throughput without affecting BER per-
formance. For the 4-QAM 10x10 MIMO configuration, the
BER performance is below 102 even for the lowest tested
SNR of 4 dB, as shown in Figure 7.

D. Scaling the Number of Antennas

The SD algorithm’s complexity is exponential; increasing
the number of antennas has a significant impact on the time
to decode the signal. Figure 8 shows that the CPU imple-
mentation breaks the real-time constraint when the number of
antennas increases to 15x15. At an SNR of 4 dB, the CPU
implementation decodes the signal in over 30ms breaking real-
time requirements. It starts reaching almost real-time decoding
at an SNR of 8 dB, while on the other hand, the FPGA
optimized implementation shows a 6.1 x speedup reducing the
decoding time to 5ms, satisfying the real-time constraint, as
demonstrated in Figure 8.

A larger MIMO system of size 20x20 incurs a high
decoding time at an SNR of 4 dB in both CPU and FPGA
implementations. Nevertheless, the FPGA implementation suc-
cessfully decodes the received signal in 9.9ms at an SNR of 8
dB, as shown in Figure 9, while CPU decoding took 88.8ms.
The 9x speedup of the FPGA implementation compared to
the CPU makes it possible to decode the signal in real-time.

E. Scaling the Modulation Factor

16-QAM modulation is significantly more complex to de-
code than 4-QAM due to the larger number of child nodes
for each expansion of a tree node. Figure 10 shows that the
decoding time for a 10x 10 MIMO system takes almost 100ms
on the CPU at an SNR of 4 dB. The CPU implementation only
starts meeting the real-time constraint at an SNR of between

Decoding Time (ms)

SNR (dB)

Fig. 8: Execution time for 15x 15 MIMO with 4-QAM modulation.
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Fig. 9: Execution time for 20x20 MIMO with 4-QAM modulation.

16 dB and 20 dB. The FPGA design is 4 x faster than the CPU,
almost achieving real-time decoding at an SNR of 8 dB. The
increase of the modulation factor affects the complexity of the
SD algorithm more than scaling the number of antennas.

The culprit for this considerable increase in complexity is
the size of the intermediate tree state matrix. The size of this
matrix is in the order of (4 x Modulation® x N), where N
is the number of receive antennas. Hence, for the 4-QAM
configuration, the size of this matrix is multiplied by a factor
of (4%) = 16, while for 16-QAM, the multiplying factor is
(16%) = 256. The tree state matrix is used in the GEMM
computation involved in evaluating the PD of each node in
the tree. Since this computation occurs many times during
the decoding process, increasing its complexity will have a
significant impact on the overall decoding time.
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Fig. 10: Execution time for 10x 10 MIMO with 16-QAM modulation.

F. Performance Discussion

The GPU-based implementations [1, 19, 24] attempt to uti-
lize the massive computational power of the GPU cores
to decode the received signal. However, the SD algorithm
includes a synchronization operation with every global time
step. The synchronization operation is responsible for updating
the sphere radius at runtime to aid in the tree-pruning process,
which significantly reduces the search space. However, such
a synchronization step is very costly on GPUs. Hence, most
GPU optimization strategies depend on heuristics to limit the
search space, but this comes at the cost of BER performance.
In our work, we focus on the optimal SD algorithm to avoid
any BER performance degradation.

The work presented in [1] uses a GEMM-based variant
of the SD algorithm with a BFS exploration strategy. Here,
we elaborate on a performance comparison with the GEMM-
BFS approach in [1] reproduced on an Nvidia A100 GPU for
the specific configurations in this work. Our FPGA optimized
design shows an average speedup of 57x compared to the
GPU implementation in [1] as illustrated in Figure 11. For a 4-
QAM 10x10 MIMO configuration, the GPU implementation
decoded the signal in 6 ms at an SNR of 12 dB. On the other
hand, our FPGA implementation decoded the signal for the
same configuration in 0.97 ms at an SNR of 4 dB. The main
reason for the significant speedup of this work is incorporating
the DFS approach in our design versus using BFS in the
GPU implementation of [1]. A BFS search strategy exposes
dependence-free parallelism that has the potential to efficiently
utilize the GPU’s cores. However, such an exploration strategy
would reach the solution leaf nodes after exploring the whole
tree. On the other hand, the DFS combined with the sorting
search strategy (implemented in our approach) prunes the
search space to less than 1% of the number of explored nodes.
Consequently, there is a considerable speedup when compared
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Fig. 11: Execution time for 10x 10 MIMO with 4-QAM modulation.
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to the approach in [1]. Moreover, The FPGA’s architecture
combined with a high-performance GEMM engine signifi-
cantly improves the signal decoding time. Hence, our design
decodes the signal in real-time at far lower SNR values than
other approaches.

Figure 12 shows a performance comparison for a 4-
QAM 10x10 MIMO system between our approach (FPGA-
optimized), ZF, MMSE, and Geosphere [14], implemented
on a Rice WARP v3 radio programmable platform [25].
We show significant improvement in the decoding time as
well as savings in the SNR values. Geosphere [14] decodes
the signal in 11 ms at an SNR of 20 dB; we show 11x
speedup in the decoding time with a reduction in the SNR
to 4 dB. Augmenting Geosphere’s Best First Search tree
traversal strategy with the GEMM-based approach eliminates
the memory-bound aspect of the execution profile. Moreover,
it maps well to the FPGA’s architecture.

V. CONCLUSION

MIMO systems are a key technology enabling high-
performance wireless networks. However, signal decoding is
a significant bottleneck that hinders the scalability of such
systems with a large number of antennas. Linear decoders
are computationally attractive, but they exhibit poor BER



performance, especially when scaling the number of antennas.
On the other hand, non-linear decoders provide good BER
performance but are computationally complex. Hence, this
paper tackles the challenging problem of non-linear decoding
algorithms to achieve better scalability.

We focused on the Sphere Decoding (SD) algorithm, which
is a variant of the Maximum Likelihood (ML) non-linear
decoding algorithm. We employed a refactored version of the
SD algorithm that transforms the memory-bound computa-
tion to a GEMM-based compute-bound operation. We used
an optimized GEMM engine composed of a systolic array
combined with a double buffering technique to execute fast
matrix multiply with single-cycle access to memory banks. We
implemented a Meta State Table (MST) that tracks the search
tree-building process while keeping a partitioned copy of the
tree state matrix, eliminating performance-prohibitive pointer-
based addressing. The algorithm was implemented on a Xilinx
ALVEO U280 FPGA, resulting in a power-efficient, high-
performance design. Hardware optimizations were applied to
adapt the computational profile of the algorithm to better
exploit both data and pipeline parallelism on the FPGA.

The proposed FPGA implementation achieves a significant
improvement in the decoding time compared to CPU and
GPU implementations while preserving BER performance.
The FPGA design shows up to 9x speedup compared to
the CPU implementation, allowing what was previously pro-
hibitive to be viable. The 15x15 MIMO configuration with
4-QAM modulation meets the real-time constraint of 10ms at
an SNR of 12 dB on the optimized CPU implementation; on
the other hand, the FPGA implementation decoded the signal
in real-time at an SNR of 4 dB. Moreover, the FPGA design
can scale to 20x20 MIMO installations while satisfying the
real-time response at an SNR of 8 dB. The FPGA’s power
efficiency excelled by showing an average energy savings of
38.1x compared to the CPU implementation. Furthermore, we
achieved an average speedup of 57 x compared to the GPU’s
GEMM-BFS based approach by refactoring the algorithm and
incorporating a more efficient search strategy.

The hardware optimizations introduced in this paper are
not only to improve decoding time but also to optimize the
FPGA resource utilization. This opens up promising research
for future work to further parallelize the execution of the SD
algorithm by partitioning the search tree over multiple Pro-
cessing Entities (PEs). Additionally, the FPGA’s flexible hard-
ware architecture facilitates the use of low-precision number
representations, which may further improve performance and
reduce resource usage. Hence, another promising extension of
this work is to explore the impact on BER performance and
decoding time when using half-precision (FP16) and mixed-
precision implementations.
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