High Throughput Spatial Convolution Filters on FPGAs

Abstract

Digital signal processing (DSP) on field- programmable gate arrays (FPGAs) has long been appealing because of the inherent parallelism in these computations that can be easily exploited to accelerate such algorithms. FPGAs have evolved significantly to further enhance the mapping of these algorithms, included additional hard blocks, such as the DSP blocks found in modern FPGAs. Although these DSP blocks can offer more efficient mapping of DSP computations, they are primarily designed for 1-D filter structures. We present a study on spatial convolutional filter implementations on FPGAs, optimizing around the structure of the DSP blocks to offer high throughput while maintaining the coefficient flexibility that other published architectures usually sacrifice. We show that it is possible to implement large filters for large 4K resolution image frames at frame rates of 30–60 FPS, while maintaining functional flexibility.

Publication
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 6, pp. 1392–1402, June 2020
Lenos Ioannou
Warwick PhD Alumnus

My research interests include reconfigurable computing and embedded systems.

Suhaib A. Fahmy
Suhaib A. Fahmy
Associate Professor of Computer Science

Suhaib is Principal Investigator of the Accelerated Connected Computing Lab (ACCL) at KAUST. His research explores hardware acceleration of complex algorithms and the integration of these accelerators within wider computing infrastructure.

Related