REFL: Resource-Efficient Federated Learning


Federated Learning (FL) enables distributed training by learners using local data, thereby enhancing privacy and reducing communication. However, it presents numerous challenges relating to the heterogeneity of the data distribution, device capabilities, and participant availability as deployments scale, which can impact both model convergence and bias. Existing FL schemes use random participant selection to improve the fairness of the selection process; however, this can result in inefficient use of resources and lower quality training. In this work, we systematically address the question of resource efficiency in FL, showing the benefits of intelligent participant selection, and incorporation of updates from straggling participants. We demonstrate how these factors enable resource efficiency while also improving trained model quality.

In European Conference on Computer Systems (EuroSys)
Suhaib A. Fahmy
Suhaib A. Fahmy
Associate Professor of Computer Science

Suhaib is Principal Investigator of the Accelerated Connected Computing Lab (ACCL) at KAUST. His research explores hardware acceleration of complex algorithms and the integration of these accelerators within wider computing infrastructure.